Hat's Fibonacci
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5705 Accepted Submission(s): 1898
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
思路:由于这样的斐波那契数列越向后,数越大。就会变成大数问题,因此我们把结果对10000取余,
分割成每四个数字一组,这样就可以变大数为用已知的变量储存,从而化 复杂为简单。
#include "stdio.h"
#define N 10000
#define M 800
int a[N][M]={0};
int main()
{ int i,j,k=0,m,n;
a[1][0]=1;
a[2][0]=1;
a[3][0]=1;
a[4][0]=1;
for(i=5;i<N;i++)
for(j=0;j<M;j++)
{k=k+a[i-1][j]+a[i-2][j]+a[i-3][j]+a[i-4][j];
a[i][j]=k%10000; //
k=k/10000;
}
while(k) //为保证所得每一项数都以 分成每四个一组储存完正
{a[i][j++]=k%10000;
k=k/10000;
}
while(scanf("%ld",&n)>0)
{
for(i=M-1;i>=0;i--)
if(a[n][i]!=0)
break;
// printf("%d ",i);
printf("%ld",a[n][i]);
for(i--;i>=0;i--)
printf("%4.4ld",a[n][i]); //注意%4.4ld 与 %04ld 输出 方式一样如下测试程序
printf("
");
// i=M;
/* for(i=M;i>=0;i--)
if(a[n][i]!=0)
break;
printf("%d",i);*
while(a[n][i]==0)
i--;
printf("%d",i);
//printf("%4ld",a[n][i]);
for(i;i>=0;i--)
printf("%4ld",a[n][i]);
printf("
");*/
}
return 0;
}
测试程序:
#include "stdio.h"
#include "stdlib.h"
int main()
{long x=1;
printf("%6.6ld",x);
printf("%06ld",x);
system ("pause");
}
思索:大数可以考虑分段存储和输出