zoukankan      html  css  js  c++  java
  • 学习进度笔记10

    Tensorflow线性回归

    源代码:

    
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    os.environ["CUDA_VISIBLE_DEVICES"]="0"

    #设置训练参数,learning_rate=0.01,training_epochs=1000,display_step=50
    learning_rate=0.01
    training_epochs=1000
    display_step=50
    #创建训练数据
    train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
    7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
    2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples=train_X.shape[0]
    #构造计算图,使用变量Variable构造变量X,Y,代码如下:
    X=tf.placeholder("float")
    Y=tf.placeholder("float")
    #设置模型的初始权重
    W=tf.Variable(np.random.randn(),name="weight")
    b=tf.Variable(np.random.randn(),name='bias')
    #构造线性回归模型
    pred=tf.add(tf.multiply(X,W),b)
    #求损失函数,即均方差
    cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
    #使用梯度下降法求最小值,即最优解
    optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    #初始化全部变量
    init =tf.global_variables_initializer()
    #使用tf.Session()创建Session会话对象,会话封装了Tensorflow运行时的状态和控制。
    with tf.Session() as sess:
    sess.run(init)
    #调用会话对象sess的run方法,运行计算图,即开始训练模型。
    #Fit all training data
    for epoch in range(training_epochs):
    for (x,y) in zip(train_X,train_Y):
    sess.run(optimizer,feed_dict={X:x,Y:y})

    #Display logs per epoch step
    if (epoch+1) % display_step==0:
    c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
    print("Epoch:" ,'%04d' %(epoch+1),"cost=","{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
    #打印训练模型的代价函数。
    training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
    print("Train cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b))
    #可视化,展现线性模型的最终结果。
    plt.plot(train_X,train_Y,'ro',label='Original data')
    plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
    plt.legend()
    plt.show()
     

    结果截图:

     

     遇到的问题:

    This application failed to start because it could not find or load the Qt platform plugin “windows”.
    Reinstalling the application may fix this problem.

    解决方法:

    把platforms文件夹拷贝到python.exe同级目录下。

  • 相关阅读:
    可变参数函数总结
    小例子一步一步解释“函数调用过程中栈的变化过程”
    自己动手实现C标准库中sqrt()函数
    无符号整数翻转函数实现reverse_bits(unsigned int value)
    stdarg.h源代码
    判断两个字符串s1 s2所含字符是否相同
    亚马逊20120915网上机试第一题:atoi函数
    [wp7软件]wp7~~HTC官方软件~~集合贴~~
    [wp7软件]wp7~~相册加密软件~~集合贴~~
    [wp7软件]wp7~~密码管理软件~~集合贴~~
  • 原文地址:https://www.cnblogs.com/songxinai/p/14254348.html
Copyright © 2011-2022 走看看