zoukankan      html  css  js  c++  java
  • 学习进度笔记15

    TensorFlow双向循环神经网络

    鉴于单向循环神经网络某些情况下的不足,提出了双向循环神经网络。因为是需要能关联未来的数据,而单向循环神经网络属于关联历史数据,所以对于未来数据提出反向循环神经网络,两个方向的网络结合到一起就能关联历史与未来了。

    双向循环神经网络按时刻展开的结构如下,可以看到向前和向后层共同连接着输出层,其中包含了6个共享权值,分别为输入到向前层和向后层两个权值、向前层和向后层各自隐含层到隐含层的权值、向前层和向后层各自隐含层到输出层的权值。

    可以由下列式子表示

    实验内容:使用TensorFlow通过双向循环神经网络算法对手写数字进行识别。

     源代码:

    from __future__ import print_function
    import tensorflow as tf
    from tensorflow.contrib import rnn
    from tensorflow.examples.tutorials.mnist import input_data
    import os
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    
    mnist=input_data.read_data_sets("/home/yxcx/tf_rnn",one_hot=True)
    
    #Traning Parameters
    learning_rate=0.001
    training_step=10000
    batch_size=128
    display_step=400
    
    #Network Parmeters
    num_input=28
    timestep=28
    num_hidden=128
    num_classes=10
    
    #tf Graph input
    X=tf.placeholder("float32",[None,timestep,num_input])
    Y=tf.placeholder("float32",[None,num_classes])
    
    #Define weights
    weights={
        'out':tf.Variable(tf.random_normal([2*num_hidden,num_classes]))
    }
    biases={
        'out':tf.Variable(tf.random_normal([num_classes]))
    }
    
    def BiRNN(X,weights,biases):
        x=tf.unstack(X,timestep,1)
    
        #define lstm cells with tensorflow
        #Forward direction cell
        lstm_fw_cell=rnn.BasicLSTMCell(num_hidden,forget_bias=1.0)
        #Backward direction cell
        lstm_bw_cell=rnn.BasicLSTMCell(num_hidden,forget_bias=1.0)
    
        #Get lstm cell output
        try:
            outputs,_,_=rnn.static_bidirectional_rnn(lstm_fw_cell,lstm_bw_cell,x,dtype=tf.float32)
        except Exception:
            outputs=rnn.static_bidirectional_rnn(lstm_fw_cell,lstm_bw_cell,x,dtype=tf.float32)
    
        # Linaer activation,using rnn inner loop last output
        return tf.matmul(outputs[-1],weights['out'])+biases['out']
    
    logits=BiRNN(X,weights,biases)
    prediction=tf.nn.softmax(logits)
    
    #Define loss and optimizer
    loss_op=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=Y))
    optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    train_op=optimizer.minimize(loss_op)
    
    #Evaluate model
    correct_pred=tf.equal(tf.argmax(prediction,1),tf.argmax(Y,1))
    accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
    
    #Initialize Variable
    init=tf.global_variables_initializer()
    
    #start training
    with tf.Session() as sess:
        # Run the initializer
        sess.run(init)
    
        for step in range(1,training_step+1):
            batch_x,batch_y=mnist.train.next_batch(batch_size)
    
            #Reshape data to get 28 seq of 28 elements
            batch_x=batch_x.reshape((batch_size,timestep,num_input))
            # Run optimizetion op
            sess.run(train_op,feed_dict={X:batch_x,Y:batch_y})
            if step % display_step == 0 or step==1:
                #Calculate batch loss and accuracy
                loss,acc=sess.run([loss_op,accuracy],feed_dict={X:batch_x,Y:batch_y})
                print("Step "+str(step)+ ",Minbatch Loss="+"{:.4f}".format(loss)+",Training Accuracy="+"{:.3f}".format(acc))
        print("Optimization Finished!")
    
        #Calculate accuracy for 128 mnist test images
        test_len=128
        test_data=mnist.test.images[:test_len].reshape((-1,timestep,num_input))
        test_label=mnist.test.labels[:test_len]
        print("Test Accuracy:",sess.run(accuracy,feed_dict={X:test_data,Y:test_label}))

    结果截图:

  • 相关阅读:
    js 数组去重的几种方式及原理
    js replace
    gulp的使用方法
    gulp 安装部署
    gulp 的5个方法
    fiddler 监听手机的http请求
    vsCood
    browser-sync使用方法
    browser-sync 安装
    npm 移除第三方包
  • 原文地址:https://www.cnblogs.com/songxinai/p/14254554.html
Copyright © 2011-2022 走看看