zoukankan      html  css  js  c++  java
  • 使用Deeplearning4j训练YOLOV2模型

    一、引入pom.xml依赖

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>cn.dearcloud</groupId>
        <artifactId>train-yolo-for-java</artifactId>
        <version>1.0-SNAPSHOT</version>
    
    
        <dependencies>
            <dependency>
                <groupId>org.deeplearning4j</groupId>
                <artifactId>deeplearning4j-zoo</artifactId>
                <version>1.0.0-beta</version>
            </dependency>
            <dependency>
                <groupId>org.deeplearning4j</groupId>
                <artifactId>deeplearning4j-modelimport</artifactId>
                <version>1.0.0-beta</version>
            </dependency>
            <!--GPU-->
            <dependency>
                <groupId>org.nd4j</groupId>
                <artifactId>nd4j-cuda-8.0-platform</artifactId>
                <version>1.0.0-beta</version>
            </dependency>
            <dependency>
                <groupId>org.deeplearning4j</groupId>
                <artifactId>deeplearning4j-cuda-8.0</artifactId>
                <version>1.0.0-beta</version>
            </dependency>
            <!--CPU-->
            <!--<dependency>-->
                <!--<groupId>org.nd4j</groupId>-->
                <!--<artifactId>nd4j-native-platform</artifactId>-->
                <!--<version>1.0.0-beta</version>-->
            <!--</dependency>-->
            <!--Log-->
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
                <version>1.16.22</version>
            </dependency>
            <dependency>
                <groupId>org.apache.logging.log4j</groupId>
                <artifactId>log4j-slf4j-impl</artifactId>
                <version>2.11.0</version>
            </dependency>
        </dependencies>
    
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.7.0</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                        <encoding>UTF-8</encoding>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    </project>

    二、读取数据集

      假设,数据集文件夹所在路径如下,下面有图片和图片同名的txt文件中记录标注对像。一行一个标注对像,每行依次是:Label,X,Y,Width,Height

      D:\Project\AIProject\train-yolo-for-java\docs\pupil-datasets 

    三、编写标注加载代码 

    package cn.dearcloud.provider;
    
    import org.apache.commons.io.FileUtils;
    import org.apache.commons.io.FilenameUtils;
    import org.datavec.image.recordreader.objdetect.ImageObject;
    import org.datavec.image.recordreader.objdetect.ImageObjectLabelProvider;
    
    import java.io.File;
    import java.net.URI;
    import java.util.ArrayList;
    import java.util.List;
    
    public class CnnLabelProvider implements ImageObjectLabelProvider {
    
        public CnnLabelProvider() {
        }
    
        @Override
        public List<ImageObject> getImageObjectsForPath(String path) {
            try {
                List<ImageObject> imageObjects = new ArrayList<>();
                File labelFile = new File(FilenameUtils.getFullPath(path), FilenameUtils.getBaseName(path) + ".txt");
                List<String> lines = FileUtils.readLines(labelFile, "UTF-8");
                for (String line : lines) {
                    //label,x,y,w,h
                    String[] arr = line.split(",");
                    if (arr.length == 5) {
                        String labelName = arr[0];
                        int x = Integer.parseInt(arr[1]);
                        int y = Integer.parseInt(arr[2]);
                        int w = Integer.parseInt(arr[3]);
                        int h = Integer.parseInt(arr[4]);
                        imageObjects.add(new ImageObject(x, y, x + w, y + h, labelName));
                    }
                }
                return imageObjects;
            } catch (Exception ex) {
                throw new RuntimeException(ex);
            }
        }
    
        @Override
        public List<ImageObject> getImageObjectsForPath(URI uri) {
            return getImageObjectsForPath(new File(uri).getPath());
        }
    }

    四、编写YoloV2训练代码

    package cn.dearcloud;
    
    import cn.dearcloud.provider.CnnLabelProvider;
    import lombok.extern.log4j.Log4j2;
    import org.bytedeco.javacpp.opencv_core;
    import org.bytedeco.javacpp.opencv_imgproc;
    import org.bytedeco.javacv.CanvasFrame;
    import org.bytedeco.javacv.OpenCVFrameConverter;
    import org.datavec.api.records.metadata.RecordMetaDataImageURI;
    import org.datavec.api.split.FileSplit;
    import org.datavec.api.split.InputSplit;
    import org.datavec.image.loader.NativeImageLoader;
    import org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader;
    import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
    import org.deeplearning4j.nn.api.OptimizationAlgorithm;
    import org.deeplearning4j.nn.conf.ConvolutionMode;
    import org.deeplearning4j.nn.conf.GradientNormalization;
    import org.deeplearning4j.nn.conf.WorkspaceMode;
    import org.deeplearning4j.nn.conf.inputs.InputType;
    import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
    import org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer;
    import org.deeplearning4j.nn.graph.ComputationGraph;
    import org.deeplearning4j.nn.layers.objdetect.DetectedObject;
    import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
    import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.KerasSpaceToDepth;
    import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration;
    import org.deeplearning4j.nn.transferlearning.TransferLearning;
    import org.deeplearning4j.nn.weights.WeightInit;
    import org.deeplearning4j.util.ModelSerializer;
    import org.deeplearning4j.zoo.model.YOLO2;
    import org.nd4j.linalg.activations.Activation;
    import org.nd4j.linalg.api.ndarray.INDArray;
    import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
    import org.nd4j.linalg.learning.config.Adam;
    
    import java.io.File;
    import java.io.IOException;
    import java.util.List;
    import java.util.Random;
    
    import static org.bytedeco.javacpp.opencv_core.FONT_HERSHEY_DUPLEX;
    import static org.bytedeco.javacpp.opencv_imgproc.resize;
    import static org.opencv.core.CvType.CV_8U;
    
    @Log4j2
    public class Yolo2Trainer {
        // parameters matching the pretrained TinyYOLO model
        int width = 480;
        int height = 320;
        int nChannels = 3;
        int gridWidth = 15;
        int gridHeight = 10;
        int nClasses = 1;
        int nBoxes = 5;
        double lambdaNoObj = 0.5;
        double lambdaCoord = 5.0;
        double[][] priorBoxes = {{1.08, 1.19}, {3.42, 4.41}, {6.63, 11.38}, {9.42, 5.11}, {16.62, 10.52}};
        double detectionThreshold = 0.3;
        // parameters for the training phase
        int batchSize = 1;
        int nEpochs = 50;
        double learningRate = 1e-3;
        double lrMomentum = 0.9;
    
        public void read() throws IOException, InterruptedException {
            String datasetsDir = "D:\Project\AIProject\train-yolo-for-java\docs\pupil-datasets";
            File imageDir = new File(datasetsDir);
    
            log.info("Load data...");
            //切分数据集
            Random rng = new Random();
            FileSplit fileSplit = new FileSplit(imageDir, NativeImageLoader.ALLOWED_FORMATS, rng);
            InputSplit[] data = fileSplit.sample(null, 0.8, 0.2);
            InputSplit trainData = data[0];
            InputSplit testData = data[1];
    
    
            //自己实现ImageObjectLabelProvider接口
            CnnLabelProvider labelProvider = new CnnLabelProvider();
            ObjectDetectionRecordReader trainRecordReader = new ObjectDetectionRecordReader(height, width, nChannels, gridHeight, gridWidth, labelProvider);
            trainRecordReader.initialize(trainData);//returned values: 4d array, with dimensions [minibatch, 4+C, h, w]
            ObjectDetectionRecordReader testRecordReader = new ObjectDetectionRecordReader(height, width, nChannels, gridHeight, gridWidth, labelProvider);
            testRecordReader.initialize(testData);
    
            // ObjectDetectionRecordReader performs regression, so we need to specify it here
            RecordReaderDataSetIterator trainDataSetIterator = new RecordReaderDataSetIterator(trainRecordReader, batchSize, 1, 1, true);
            trainDataSetIterator.setPreProcessor(new ImagePreProcessingScaler(0, 1));
    
            RecordReaderDataSetIterator testDataSetIterator = new RecordReaderDataSetIterator(testRecordReader, 1, 1, 1, true);
            testDataSetIterator.setPreProcessor(new ImagePreProcessingScaler(0, 1));
    
            ComputationGraph model;
            String modelFilename = "model_surface_YOLO2.zip";
            if (new File(modelFilename).exists()) {
                log.info("Load model...");
                model = ModelSerializer.restoreComputationGraph(modelFilename);
            } else {
                ComputationGraph pretrained = (ComputationGraph) YOLO2.builder().build().initPretrained();
                INDArray priors = org.nd4j.linalg.factory.Nd4j.create(priorBoxes);
                FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder()
                        .seed(1234)
                        .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                        .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
                        .gradientNormalizationThreshold(1.0)
                        .updater(new Adam.Builder().learningRate(1e-3).build())
                        .l2(0.00001)
                        .activation(Activation.IDENTITY)
                        .trainingWorkspaceMode(WorkspaceMode.ENABLED)
                        .inferenceWorkspaceMode(WorkspaceMode.ENABLED)
                        .build();
    
                model = new TransferLearning.GraphBuilder(pretrained).fineTuneConfiguration(fineTuneConf).removeVertexKeepConnections("conv2d_23")
                        .addLayer("convolution2d_23",
                                new ConvolutionLayer.Builder(1, 1)
                                        .nIn(1024)
                                        .nOut(nBoxes * (5 + nClasses))
                                        .stride(1, 1)
                                        .convolutionMode(ConvolutionMode.Same)
                                        .weightInit(WeightInit.UNIFORM)
                                        .hasBias(false)
                                        .activation(Activation.IDENTITY)
                                        .build(),
                                "leaky_re_lu_22")
                        .addLayer("outputs",
                                new Yolo2OutputLayer.Builder()
                                        .boundingBoxPriors(priors)
                                        .lambbaNoObj(lambdaNoObj).lambdaCoord(lambdaCoord)
                                        .build(),
                                "convolution2d_23")
                        .setOutputs("outputs")
                        .build();
    
                System.out.println(model.summary(InputType.convolutional(width, height, nChannels)));
                //设置训练时输出
                model.setListeners(new org.deeplearning4j.optimize.listeners.ScoreIterationListener(1));
                //开始训练
                for (int i = 0; i < nEpochs; i++) {
                    trainDataSetIterator.reset();
                    while (trainDataSetIterator.hasNext()) {
                        model.fit(trainDataSetIterator.next());
                    }
                    log.info("*** Completed epoch {} ***", i);
                }
                ModelSerializer.writeModel(model, modelFilename, true);
            }
    
            // 可视化与测试
            NativeImageLoader imageLoader = new NativeImageLoader();
            CanvasFrame frame = new CanvasFrame("RedBloodCellDetection");
            OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();
            org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer yout = (org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer) model.getOutputLayer(0);
            List<String> labels = trainDataSetIterator.getLabels();
            testDataSetIterator.setCollectMetaData(true);
            while (testDataSetIterator.hasNext() && frame.isVisible()) {
                org.nd4j.linalg.dataset.DataSet ds = testDataSetIterator.next();
                RecordMetaDataImageURI metadata = (RecordMetaDataImageURI) ds.getExampleMetaData().get(0);
                INDArray features = ds.getFeatures();
                INDArray results = model.outputSingle(features);
                List<DetectedObject> objs = yout.getPredictedObjects(results, detectionThreshold);
                File file = new File(metadata.getURI());
                log.info(file.getName() + ": " + objs);
    
                opencv_core.Mat mat = imageLoader.asMat(features);
                opencv_core.Mat convertedMat = new opencv_core.Mat();
                mat.convertTo(convertedMat, CV_8U, 255, 0);
                int w = metadata.getOrigW() * 2;
                int h = metadata.getOrigH() * 2;
                opencv_core.Mat image = new opencv_core.Mat();
                resize(convertedMat, image, new opencv_core.Size(w, h));
                for (DetectedObject obj : objs) {
                    double[] xy1 = obj.getTopLeftXY();
                    double[] xy2 = obj.getBottomRightXY();
                    String label = labels.get(obj.getPredictedClass());
                    int x1 = (int) Math.round(w * xy1[0] / gridWidth);
                    int y1 = (int) Math.round(h * xy1[1] / gridHeight);
                    int x2 = (int) Math.round(w * xy2[0] / gridWidth);
                    int y2 = (int) Math.round(h * xy2[1] / gridHeight);
                    opencv_imgproc.rectangle(image, new opencv_core.Point(x1, y1), new opencv_core.Point(x2, y2), opencv_core.Scalar.RED);
                    opencv_imgproc.putText(image, label, new opencv_core.Point(x1 + 2, y2 - 2), FONT_HERSHEY_DUPLEX, 1, opencv_core.Scalar.GREEN);
                }
                frame.setTitle(new File(metadata.getURI()).getName() + " - RedBloodCellDetection");
                frame.setCanvasSize(w, h);
                frame.showImage(converter.convert(image));
                frame.waitKey();
            }
            frame.dispose();
        }
    }

    五、顺便给大家写写TinyYolo的训练代码

    package cn.dearcloud;
    
    import lombok.extern.log4j.Log4j2;
    import org.bytedeco.javacpp.opencv_core;
    import org.bytedeco.javacpp.opencv_imgproc;
    import org.bytedeco.javacv.CanvasFrame;
    import org.bytedeco.javacv.OpenCVFrameConverter;
    import org.datavec.api.io.filters.RandomPathFilter;
    import org.datavec.api.records.metadata.RecordMetaDataImageURI;
    import org.datavec.api.split.FileSplit;
    import org.datavec.api.split.InputSplit;
    import org.datavec.image.loader.NativeImageLoader;
    import org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader;
    import org.datavec.image.recordreader.objdetect.impl.VocLabelProvider;
    import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
    import org.deeplearning4j.nn.api.OptimizationAlgorithm;
    import org.deeplearning4j.nn.conf.ConvolutionMode;
    import org.deeplearning4j.nn.conf.GradientNormalization;
    import org.deeplearning4j.nn.conf.WorkspaceMode;
    import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
    import org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer;
    import org.deeplearning4j.nn.graph.ComputationGraph;
    import org.deeplearning4j.nn.layers.objdetect.DetectedObject;
    import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration;
    import org.deeplearning4j.nn.transferlearning.TransferLearning;
    import org.deeplearning4j.nn.weights.WeightInit;
    import org.deeplearning4j.util.ModelSerializer;
    import org.deeplearning4j.zoo.model.TinyYOLO;
    import org.deeplearning4j.zoo.model.YOLO2;
    import org.nd4j.linalg.activations.Activation;
    import org.nd4j.linalg.api.ndarray.INDArray;
    import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
    import org.nd4j.linalg.io.ClassPathResource;
    import org.nd4j.linalg.learning.config.Nesterovs;
    
    import java.io.File;
    import java.io.IOException;
    import java.net.URI;
    import java.net.URISyntaxException;
    import java.util.List;
    import java.util.Random;
    
    import static org.bytedeco.javacpp.opencv_core.FONT_HERSHEY_DUPLEX;
    import static org.bytedeco.javacpp.opencv_imgproc.resize;
    import static org.opencv.core.CvType.CV_8U;
    
    /**
     * 参考:https://blog.csdn.net/u011669700/article/details/79886619 实现
     */
    @Log4j2
    public class TinyYoloTrainer {
        // parameters matching the pretrained TinyYOLO model
        int width = 416;
        int height = 416;
        int nChannels = 3;
        int gridWidth = 13;
        int gridHeight = 13;
        int numClasses = 1;
        // parameters for the Yolo2OutputLayer
        int nBoxes = 5;
        double lambdaNoObj = 0.5;
        double lambdaCoord = 5.0;
        double[][] priorBoxes = {{2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
        double detectionThreshold = 0.3;
        // parameters for the training phase
        int batchSize = 2;
        int nEpochs = 50;
        double learningRate = 1e-3;
        double lrMomentum = 0.9;
    
        public void read() throws IOException, InterruptedException {
            String dataDir = new ClassPathResource("/datasets").getFile().getPath();
            File imageDir = new File(dataDir, "JPEGImages");
    
            log.info("Load data...");
            //切分数据集
            Random rng = new Random();
            FileSplit fileSplit = new org.datavec.api.split.FileSplit(imageDir, NativeImageLoader.ALLOWED_FORMATS, rng);
            InputSplit[] data = fileSplit.sample(new RandomPathFilter(rng) {
                @Override
                protected boolean accept(String name) {
                    boolean isXmlExist = false;
                    try {
                        isXmlExist = new File(new URI(name.replace("JPEGImages", "Annotations").replace(".jpg", ".xml"))).exists();
                    } catch (URISyntaxException e) {
                        e.printStackTrace();
                    }
                    return isXmlExist;
                }
            }, 0.8, 0.2);
            InputSplit trainData = data[0];
            InputSplit testData = data[1];
    
            //用于解析识别voc方式的label方式,也可以自己实现ImageObjectLabelProvider接口
            VocLabelProvider labelProvider = new VocLabelProvider(dataDir);
            ObjectDetectionRecordReader trainRecordReader = new org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader(height, width, nChannels, gridHeight, gridWidth, labelProvider);
            trainRecordReader.initialize(trainData);//returned values: 4d array, with dimensions [minibatch, 4+C, h, w]
            ObjectDetectionRecordReader testRecordReader = new org.datavec.image.recordreader.objdetect.ObjectDetectionRecordReader(height, width, nChannels, gridHeight, gridWidth, labelProvider);
            testRecordReader.initialize(testData);
    
            // ObjectDetectionRecordReader performs regression, so we need to specify it here
            RecordReaderDataSetIterator trainDataSetIterator = new org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator(trainRecordReader, batchSize, 1, 1, true);
            trainDataSetIterator.setPreProcessor(new ImagePreProcessingScaler(0, 1, 8));
    
            RecordReaderDataSetIterator testDataSetIterator = new org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator(testRecordReader, batchSize, 1, 1, true);
            testDataSetIterator.setPreProcessor(new ImagePreProcessingScaler(0, 1, 8));
    
    
            String modelFilename = "model_yolov2.zip";
            ComputationGraph pretrained = (ComputationGraph) TinyYOLO.builder().build().initPretrained();
            INDArray priors = org.nd4j.linalg.factory.Nd4j.create(priorBoxes);
    
            FineTuneConfiguration fineTuneConfiguration = new org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder()
                    .seed(100)
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                    .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
                    .gradientNormalizationThreshold(1.0)
                    .updater(Nesterovs.builder().learningRate(learningRate).momentum(lrMomentum).build())
                    .activation(Activation.IDENTITY)
                    .trainingWorkspaceMode(WorkspaceMode.ENABLED)
                    .inferenceWorkspaceMode(WorkspaceMode.ENABLED)
                    .build();
    
            ComputationGraph model = new TransferLearning.GraphBuilder(pretrained).fineTuneConfiguration(fineTuneConfiguration).removeVertexKeepConnections("conv2d_9")
                    .addLayer("convolution2d_9",
                            new ConvolutionLayer.Builder(1, 1)
                                    .nIn(1024)
                                    .nOut(nBoxes * (5 + numClasses))
                                    .stride(1, 1)
                                    .convolutionMode(ConvolutionMode.Same)
                                    .weightInit(WeightInit.UNIFORM)
                                    .hasBias(false)
                                    .activation(Activation.IDENTITY)
                                    .build(),
                            "leaky_re_lu_8")
                    .addLayer("outputs", new Yolo2OutputLayer.Builder().lambbaNoObj(lambdaNoObj).lambdaCoord(lambdaCoord).boundingBoxPriors(priors).build(),
                            "convolution2d_9")
                    .setOutputs("outputs")
                    .build();
            //设置训练时输出
            model.setListeners(new org.deeplearning4j.optimize.listeners.ScoreIterationListener(1));
            //开始训练
            for (int i = 0; i < nEpochs; i++) {
                trainDataSetIterator.reset();
                while (trainDataSetIterator.hasNext()) {
                    model.fit(trainDataSetIterator.next());
                }
                log.info("*** Completed epoch {} ***", i);
            }
            ModelSerializer.writeModel(model, modelFilename, true);
    
    
            // 可视化与测试
            NativeImageLoader imageLoader = new NativeImageLoader();
            CanvasFrame frame = new CanvasFrame("RedBloodCellDetection");
            OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();
            org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer yout = (org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer) model.getOutputLayer(0);
            List<String> labels = trainDataSetIterator.getLabels();
            testDataSetIterator.setCollectMetaData(true);
            while (testDataSetIterator.hasNext() && frame.isVisible()) {
                org.nd4j.linalg.dataset.DataSet ds = testDataSetIterator.next();
                RecordMetaDataImageURI metadata = (RecordMetaDataImageURI) ds.getExampleMetaData().get(0);
                INDArray features = ds.getFeatures();
                INDArray results = model.outputSingle(features);
                List<DetectedObject> objs = yout.getPredictedObjects(results, detectionThreshold);
                File file = new File(metadata.getURI());
                log.info(file.getName() + ": " + objs);
    
                opencv_core.Mat mat = imageLoader.asMat(features);
                opencv_core.Mat convertedMat = new opencv_core.Mat();
                mat.convertTo(convertedMat, CV_8U, 255, 0);
                int w = metadata.getOrigW() * 2;
                int h = metadata.getOrigH() * 2;
                opencv_core.Mat image = new opencv_core.Mat();
                resize(convertedMat, image, new opencv_core.Size(w, h));
                for (DetectedObject obj : objs) {
                    double[] xy1 = obj.getTopLeftXY();
                    double[] xy2 = obj.getBottomRightXY();
                    String label = labels.get(obj.getPredictedClass());
                    int x1 = (int) Math.round(w * xy1[0] / gridWidth);
                    int y1 = (int) Math.round(h * xy1[1] / gridHeight);
                    int x2 = (int) Math.round(w * xy2[0] / gridWidth);
                    int y2 = (int) Math.round(h * xy2[1] / gridHeight);
                    opencv_imgproc.rectangle(image, new opencv_core.Point(x1, y1), new opencv_core.Point(x2, y2), opencv_core.Scalar.RED);
                    opencv_imgproc.putText(image, label, new opencv_core.Point(x1 + 2, y2 - 2), FONT_HERSHEY_DUPLEX, 1, opencv_core.Scalar.GREEN);
                }
                frame.setTitle(new File(metadata.getURI()).getName() + " - RedBloodCellDetection");
                frame.setCanvasSize(w, h);
                frame.showImage(converter.convert(image));
                frame.waitKey();
            }
            frame.dispose();
        }
    }

     日志如下:





  • 相关阅读:
    实验二
    实验一
    个人简介
    第四次 博客作业
    第三次博客作业package com.fry; //导入java.util.Arrays; import java.util.Arrays; public class Demo1 { public static void main(String[]args){ //创建对象,对象名为hello Demo1 hello =new Demo1(); //调用方法并将返回值保存在变量中
    白盒
    单元测试
    个人简介
    第五次博客作业
    第三次博客作业
  • 原文地址:https://www.cnblogs.com/songxingzhu/p/10141864.html
Copyright © 2011-2022 走看看