zoukankan      html  css  js  c++  java
  • Pandas数据清洗

    删除多列

    在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。

    def drop_multiple_col(col_names_list, df): 

        INPUT  -> List of column names, df

        OUTPUT -> updated df with dropped columns 
        ------
        
        df.drop(col_names_list, axis=1, inplace=True)
        return df

    转换数据类型

    当数据集变大时,需要转换数据类型来节省内存

    def change_dtypes(col_int, col_float, df): 

        INPUT  -> List of column names (int, float), df

        OUTPUT -> updated df with smaller memory  
        ------
        
        df[col_int] = df[col_int].astype( int32 )
        df[col_float] = df[col_float].astype( float32 )

    将分类变量转换为数值变量

    一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。

    def convert_cat2num(df):
        # Convert categorical variable to numerical variable
        num_encode = { col_1  : { YES :1,  NO :0},
                       col_2   : { WON :1,  LOSE :0,  DRAW :0}}  
        df.replace(num_encode, inplace=True)  

    检查缺失数据

    如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。

    def check_missing_data(df):
        # check for any missing data in the df (display in descending order)
        return df.isnull().sum().sort_values(ascending=False)

    删除列中的字符串

    有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。

    def remove_col_str(df):
        # remove a portion of string in a dataframe column - col_1
        df[ col_1 ].replace(, , regex=True, inplace=True)

        # remove all the characters after &# (including &#) for column - col_1
        df[ col_1 ].replace(  &#.* , , regex=True, inplace=True)

    删除列中的空格

    数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。

    def remove_col_white_space(df):
        # remove white space at the beginning of string 
        df[col] = df[col].str.lstrip()

    用字符串连接两列(带条件)

    当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。根据需要,结尾处的字母也可以在连接完成后删除。

    def concat_col_str_condition(df):
        # concat 2 columns with strings if the last 3 letters of the first column are  pil
        mask = df[ col_1 ].str.endswith( pil , na=False)
        col_new = df[mask][ col_1 ] + df[mask][ col_2 ]
        col_new.replace( pil ,    , regex=True, inplace=True)  # replace the  pil  with emtpy space

    转换时间戳(从字符串到日期时间格式)

    在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    def convert_str_datetime(df): 
        
        AIM    -> Convert datetime(String) to datetime(format we want)

        INPUT  -> df

        OUTPUT -> updated df with new datetime format 
        ------
        
        df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d %H:%M:%S.%f )) 

    https://towardsdatascience.com/the-simple-yet-practical-data-cleaning-codes-ad27c4ce0a38

  • 相关阅读:
    Centos 通过yum的方式升级内核
    docker入门——镜像简介
    docker入门——管理容器
    docker入门——安装及简单操作
    docker入门——简介
    Centos 6安装 Jenkins
    Centos 7 搭建OpenStack 私有云——(1)基础环境配置
    Python正则表达式
    多选控件multipicker
    绝对定位 软键盘弹出时顶起底部按钮
  • 原文地址:https://www.cnblogs.com/songyuejie/p/11824325.html
Copyright © 2011-2022 走看看