zoukankan      html  css  js  c++  java
  • gensim Load embeddings

    gensim package

    
    from gensim.models.keyedvectors import KeyedVectors
    
    twitter_embedding_path = 'twitter_embedding.emb'
    twitter_vocab_path = 'twitter_model.vocab'
    foursquare_embedding_path = 'foursquare_embedding.emb'
    foursquare_vocab_path = 'foursquare_model.vocab'
    
    # load the embedding vector using gensim
    x_vectors = KeyedVectors.load_word2vec_format(foursquare_embedding_path, binary=False, fvocab=foursquare_vocab_path)
    y_vectors = KeyedVectors.load_word2vec_format(twitter_embedding_path, binary=False, fvocab=twitter_vocab_path)
    
    print('type(x_vectors)', type(x_vectors))
    print('type(x_vectors.vocab)', type(x_vectors.vocab))
    print('type(x_vectors.vocab.keys())', type(x_vectors.vocab.keys()))
    

    Content in 'twitter_embedding.emb':

    5120 64
    BarackObama -0.079930 0.106491 -0.075812 -0.026447 ...
    mashable 0.046692 -0.038019 -0.055519 ...
    ...

    Content in 'twitter_model.vocab':

    BarackObama 3475971
    mashable 2668606
    JonahLupton 2515250
    instagram 2359886
    TheEllenShow 2292545
    cnnbrk 2157283
    nytimes 2141588
    foursquare 2021352

    ...

    Write the embeddings into file

    for writing the embeddings into file
    ref code patch:

    embedding_path = data_path + 'embedding/'
    # ....
    modelX = word2vec.Word2Vec(walkList_x, negative=10, sg=1, hs=0, size=100, window=4, min_count=0, workers=15, iter=30)
    # save the embedding results
    modelX.wv.save_word2vec_format(embedding_path + 'twitter.emb', fvocab=embedding_path + 'twitter.vocab')
    
  • 相关阅读:
    yii框架_用户登录
    判断变量是否定义
    ajax小结
    yii框架_1
    yii框架_1_简单模型搭建与应用
    Greedy Gift Givers
    C# 音量控制 静音 等
    Fidelity Job Opportunities
    SPSiteDataQuery
    eBooks on html javascript & css
  • 原文地址:https://www.cnblogs.com/sonictl/p/11220479.html
Copyright © 2011-2022 走看看