zoukankan      html  css  js  c++  java
  • gensim Load embeddings

    gensim package

    
    from gensim.models.keyedvectors import KeyedVectors
    
    twitter_embedding_path = 'twitter_embedding.emb'
    twitter_vocab_path = 'twitter_model.vocab'
    foursquare_embedding_path = 'foursquare_embedding.emb'
    foursquare_vocab_path = 'foursquare_model.vocab'
    
    # load the embedding vector using gensim
    x_vectors = KeyedVectors.load_word2vec_format(foursquare_embedding_path, binary=False, fvocab=foursquare_vocab_path)
    y_vectors = KeyedVectors.load_word2vec_format(twitter_embedding_path, binary=False, fvocab=twitter_vocab_path)
    
    print('type(x_vectors)', type(x_vectors))
    print('type(x_vectors.vocab)', type(x_vectors.vocab))
    print('type(x_vectors.vocab.keys())', type(x_vectors.vocab.keys()))
    

    Content in 'twitter_embedding.emb':

    5120 64
    BarackObama -0.079930 0.106491 -0.075812 -0.026447 ...
    mashable 0.046692 -0.038019 -0.055519 ...
    ...

    Content in 'twitter_model.vocab':

    BarackObama 3475971
    mashable 2668606
    JonahLupton 2515250
    instagram 2359886
    TheEllenShow 2292545
    cnnbrk 2157283
    nytimes 2141588
    foursquare 2021352

    ...

    Write the embeddings into file

    for writing the embeddings into file
    ref code patch:

    embedding_path = data_path + 'embedding/'
    # ....
    modelX = word2vec.Word2Vec(walkList_x, negative=10, sg=1, hs=0, size=100, window=4, min_count=0, workers=15, iter=30)
    # save the embedding results
    modelX.wv.save_word2vec_format(embedding_path + 'twitter.emb', fvocab=embedding_path + 'twitter.vocab')
    
  • 相关阅读:
    练习!!标准体重
    C# 阶乘累加
    C# 阶乘
    C# 累加求和
    C# 100块钱,买2元一只的圆珠笔3块钱一个的尺子5元一个的铅笔盒每样至少一个,正好花光,有多少种花法。
    C# 一张纸0.00007m,折多少次和珠峰一样高
    C# 100以内质数
    C# 100以内质数和
    网站的基本布局
    C#递归
  • 原文地址:https://www.cnblogs.com/sonictl/p/11220479.html
Copyright © 2011-2022 走看看