zoukankan      html  css  js  c++  java
  • 手把手教你搭建一个GAN(生成对抗网络)模型

    手把手教你搭建一个GAN(生成对抗网络)模型

    这个教程用 Keras 实现一个简单的GAN (生成对抗网络)模型. 基于这个:mnistGAN项目,我们将用到Keras 这个python 库。

    将用到的python packages:

    • keras: 神经网络模型相关
    • matplotlib: 画图
    • tensorflow: keras运行基础
    • tqdm: 进度条

    Talk is cheap, show me the code.

    1. 导入包:

    import os
    import numpy as np
    import matplotlib.pyplot as plt
    from tqdm import tqdm
    
    from keras.layers import Input  # input layer  
    from keras.models import Model, Sequential
    from keras.layers.core import Dense, Dropout
    from keras.layers.advanced_activations import LeakyReLU
    from keras.datasets import mnist
    from keras.optimizers import Adam
    from keras import initializers
    
    

    2. 定义几个变量:

    # Let Keras know that we are using tensorflow as our backend engine
    os.environ["KERAS_BACKEND"] = "tensorflow"
    
    # To make sure that we can reproduce the experiment and get the same results by same random output
    np.random.seed(10)
    
    # The dimension of our random noise vector. this code is from: sonictl_at_cnblogs.net
    random_dim = 100
    

    3. 准备数据:

    这里要用到手写阿拉伯数字(MNIST)数据集。MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 介绍一下:

    MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.

    MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分:

    • Training set images(包含 60,000 个样本)
    • Training set labels(包含 60,000 个标签)
    • Test set images(10,000 个样本)
    • Test set labels(包含 10,000 个标签)
      在 MNIST 数据集中的每张图片由 28 x 28 个像素点构成, 每个像素点用一个灰度值表示. labels包含了相应的目标变量, 也就是手写数字的类标签(整数 0-9).
      如图:
      MNIST 数据集中的图

    代码:

    def load_minst_data():
        # load the data
        (x_train, y_train), (x_test, y_test) = mnist.load_data()    # y is the set of labels, mnist.load_data() is part of Keras and allows you to easily import the MNIST dataset
        # normalize our inputs to be in the range[-1, 1]
        x_train = (x_train.astype(np.float32) - 127.5)/127.5
        # convert x_train with a shape of (60000, 28, 28) to (60000, 784) so we have
        # 784 columns per row
        x_train = x_train.reshape(60000, 784)
        return (x_train, y_train, x_test, y_test)
    

    4. 生成器和判别器

    现在要建立生成器和判别器,我们要用Adam 优化器来优化这2个网络。对于生成器和判别器中的神经网络,我们都用3个隐藏层,并用Leaky Relu函数来作为激活函数。这里还有个技巧,为了提升判别器在它没见过的数据上的鲁棒性,在里面加了一个DropOut 层

    # You will use the Adam optimizer
    def get_optimizer():
        return Adam(lr=0.0002, beta_1=0.5)
    
    def get_generator(optimizer):
        generator = Sequential()
        generator.add(Dense(256, input_dim=random_dim, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
        generator.add(LeakyReLU(0.2))
    
        generator.add(Dense(512))
        generator.add(LeakyReLU(0.2))
    
        generator.add(Dense(1024))
        generator.add(LeakyReLU(0.2))
    
        generator.add(Dense(784, activation='tanh'))
        generator.compile(loss='binary_crossentropy', optimizer=optimizer)
        return generator
    
    def get_discriminator(optimizer):
        discriminator = Sequential()
        discriminator.add(Dense(1024, input_dim=784, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
        discriminator.add(LeakyReLU(0.2))
        discriminator.add(Dropout(0.3))
    
        discriminator.add(Dense(512))
        discriminator.add(LeakyReLU(0.2))
        discriminator.add(Dropout(0.3))
    
        discriminator.add(Dense(256))
        discriminator.add(LeakyReLU(0.2))
        discriminator.add(Dropout(0.3))
    
        discriminator.add(Dense(1, activation='sigmoid'))
        discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
        return discriminator
    

    一个流程的代码

    有关的注释都已经写了。一行行弄懂基本就懂了。

    import os
    import numpy as np
    import matplotlib.pyplot as plt
    from tqdm import tqdm
    
    
    from keras.layers import Input
    from keras.models import Model, Sequential
    from keras.layers.core import Dense, Dropout
    from keras.layers.advanced_activations import LeakyReLU
    from keras.datasets import mnist
    from keras.optimizers import Adam
    from keras import initializers
    
    # fix the multiple OpenMP runtime linked error:
    os.environ['KMP_DUPLICATE_LIB_OK']='True'
    
    # Let Keras know that we are using tensorflow as our backend engine
    os.environ["KERAS_BACKEND"] = "tensorflow"
    
    # To make sure that we can reproduce the experiment and get the same results
    np.random.seed(10)
    
    # The dimension of our random noise vector. This vector is the most initial input of the gan Model.
    random_dim = 100
    
    # size of each batch
    batch_size = 128
    
    # load the data:
    (x_train, y_train), (x_test, y_test) = mnist.load_data('mnist.npz')
    x_train = (x_train.astype(np.float32) - 127.5)/127.5   # x_train_i is from 0 to 255, 255 = 127.5*2
    # convert x_train with a shape of (60000, 28, 28) to (60000, 784) so we have
    # 784 columns per row
    x_train = x_train.reshape(60000, 784)
    
    # Split the training data into batches of size 128
    batch_count = x_train.shape[0] / batch_size
    batch_count = int(round(batch_count))
    print('batch_count:', batch_count)
    
    #
    # ==== build the GAN ====
    adam = Adam(lr=0.0002, beta_1=0.5)
    
    # -- generator building: --
    generator = Sequential()   # keras Sequential model, model of sequential stack of layers
    generator.add(Dense(256, input_dim=random_dim, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    # layer: (256, input_dim=random_dim, kernel_initializer=initializers.RandomNormal(stddev=0.02))
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(512))     # second layer
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(1024))    # third layer
    generator.add(LeakyReLU(0.2))
    generator.add(Dense(28*28, activation='tanh'))    # output layer, 784 = 28*28
    generator.compile(loss='binary_crossentropy', optimizer=adam)    # compile Before training a model,
    # you need to configure the learning process, which is done via the compile method.
    
    # -- discriminator building: --
    discriminator = Sequential()
    
    discriminator.add(Dense(1024, input_dim=784, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    
    discriminator.add(Dense(512))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    
    discriminator.add(Dense(256))
    discriminator.add(LeakyReLU(0.2))
    discriminator.add(Dropout(0.3))
    
    discriminator.add(Dense(1, activation='sigmoid'))
    discriminator.compile(loss='binary_crossentropy', optimizer=adam)
    
    # -- gan building with generator&discriminator: --
    discriminator.trainable = False  # frozen discriminator first. Train either the generator or discriminator at a time
    gan_input = Input(shape=(random_dim,))   # keras.layers.input, type: tensor.
    # gan input (noise) will be 100-dimensional vectors
    
    x = generator(gan_input)  # gan_input -> generator(a Sequential()) -> x , x is the input of discriminator, x is an image
    gan_output = discriminator(x) # x -> discriminator -> gan_output. gan_output is a probability: if the image is real
    gan = Model(inputs=gan_input, outputs=gan_output) # gan_input ->[GAN]-> gan_output. The Model takes the head and tail as
    # its arguments of inputs and outputs.
    
    gan.compile(loss='binary_crossentropy', optimizer=adam) # gan: <keras.engine.training.Model object at 0x647626d68>
    
    # ==== one epoch of training: =====
    e = 1
    print( '-'*15, 'Epoch %d' % e, '-'*15)
    for _ in tqdm(range(batch_count)):  # each batch in batch_count, Note: operations on each batch of 128 samples.
        # Get a random set of input noise and images
        noise = np.random.normal(0, 1, size=[batch_size, random_dim])   # batch_size = 128, one batch of noise.
        temp_idx = np.random.randint(0, x_train.shape[0], size=batch_size)  # pick 128 rand int numbers from [0, 60000]
        image_batch = x_train[temp_idx]  # shape=(128,784)
    
        generated_images = generator.predict(noise)  # Generate fake MNIST images: shape=(128,784)
        num_fake_img = len(generated_images)
        X = np.concatenate([image_batch, generated_images])  # concatenate the True image batch and Fake image  (256,784)
    
        # Labels for generated and real data
        y_dis = np.zeros(2*batch_size)
        y_dis[:batch_size] = 0.9   # One-sided label smoothing
        # read more: https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b?gi=ddcc9670e7bd
    
        # Train discriminator
        discriminator.trainable = True
        discriminator.train_on_batch(X, y_dis)   # The training of discriminator is as same as general neural networks
    
        # Train generator
        discriminator.trainable = False
        noise = np.random.normal(0, 1, size=[batch_size, random_dim])
        y_gen = np.ones(batch_size)
        gan.train_on_batch(noise, y_gen)
    

    You can read more content in the link below:
    Read more:

    .
    .
    .
    .
    .
    .

  • 相关阅读:
    当我说要做大数据工程师时他们都笑我,直到三个月后……转
    体系化认识RPC--转
    jsoup HTML parser hello world examples--转
    数组指针和指针数组的区别
    什么是计算机科学
    HTML图片热区map area的用法
    九宫八卦--易学基础
    初探Net框架下的XML编程技术
    百度网盘学习资料
    遍历json 对象的属性并且动态添加属性
  • 原文地址:https://www.cnblogs.com/sonictl/p/12323843.html
Copyright © 2011-2022 走看看