zoukankan      html  css  js  c++  java
  • 2020.10.03--2020.10.08

    1. Kaiming He 的 《Deep Residual Learning for Image Recognition》

      了解残差网络。更深的网络有网络退化问题。有更多hidden layers的网络不如有中等数量hidden layers的网络。这不是由过拟合造成的。如果将最后几层恒等映射,更深的网络起码表现会和之前网络表现的一样好。说明神经网络拟合恒等映射很难。

      残差网络通过在几层layers之间加一个短连接,使数据能够更顺利地传递, preconditioned ,使网络能够更容易实现恒等映射。

      现在残差网络基本成为神经网络的标配,因为能够使网络更深。

    2. Xavier Glorot 的 《Understanding the difficulty of training deep feedforward neural networks》

      在分类问题中,交叉熵比quadratic cost function 好,更不易陷入平稳饱和(plateau)。

          

    为了满足上面的条件,得到了normalized initialization 的公式如下,

    normalized initialization有效解决了梯度消失/爆炸。

    3. 《Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density》

      之前读过,但是这回关注点不一样,想看看在制造器件的时候能不能应用上EDA,就像设计模拟电路一样,发现这篇文章更多的是偏材料或者是物理建模。

      基于Fowler-Nordheim隧穿效应,通过旋涂分散在PDMS 中极低浓度的海胆状空心碳球(UHCS)来制造具有超高灵敏度和感测密度的压力传感器。

    4. Zhenan Bao 的《Microengineering Pressure Sensor Active Layers for Improved Performance》(粗读)

      测试在柔性器件上分布金字塔形,圆柱形和立方体形的颗粒来制造压力传感器

    5. 《A survey of skin-color modeling and detection methods》

      这是一篇文献综述文章,列举了skin detection 的color space ,各种 skin-color classfier, 还有光线适应技术(这部分还没读)

    1) 各个color space都有最适合的skin detector with comparable performance , 只要两个color space 之间存在可逆的转换。

    2)BN classfier 适合 small-labeled dataset 的训练,下一阶段准备用Bayesian Network 来实现skin detection(或者直接对bdf区域进行detect)

  • 相关阅读:
    组件之间通信(父传子)
    flex布局
    ffmpeg解析TS流(转)
    swift之?和!的含义(转)
    Swift之画圆角添加多个枚举值方法
    swift之singleton
    swift之闭包
    Swift之fallthrough
    Selector
    Settings Bundle
  • 原文地址:https://www.cnblogs.com/sophie-world/p/13784835.html
Copyright © 2011-2022 走看看