zoukankan      html  css  js  c++  java
  • linux通用双向链表

    1, 基于linux4.9版本

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #if 1  
    
    struct list_head {                     
        struct list_head *next, *prev;  
    };                                               
       
    #define WRITE_ONCE(dst, src)    ((dst) = (src))
    #define READ_ONCE(src)          (src)
    #define LIST_POISON1            NULL
    #define LIST_POISON2            NULL
    
    #define container_of(ptr, type, member) 
        (type *)( (char *)ptr - offsetof(type, member) )
    
    /*
     * Simple doubly linked list implementation.
     *
     * Some of the internal functions ("__xxx") are useful when
     * manipulating whole lists rather than single entries, as
     * sometimes we already know the next/prev entries and we can
     * generate better code by using them directly rather than
     * using the generic single-entry routines.
     */
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) 
        struct list_head name = LIST_HEAD_INIT(name)
    
    static inline void INIT_LIST_HEAD(struct list_head *list)
    {
        WRITE_ONCE(list->next, list);
        list->prev = list;
    }
    
    /*
     * Insert a new entry between two known consecutive entries.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    #ifndef CONFIG_DEBUG_LIST
    static inline void __list_add(struct list_head *new,
                      struct list_head *prev,
                      struct list_head *next)
    {
        next->prev = new;
        new->next = next;
        new->prev = prev;
        WRITE_ONCE(prev->next, new);
    }
    #else
    extern void __list_add(struct list_head *new,
                      struct list_head *prev,
                      struct list_head *next);
    #endif
    
    /**
     * list_add - add a new entry
     * @new: new entry to be added
     * @head: list head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static inline void list_add(struct list_head *new, struct list_head *head)
    {
        __list_add(new, head, head->next);
    }
    
    
    /**
     * list_add_tail - add a new entry
     * @new: new entry to be added
     * @head: list head to add it before
     *
     * Insert a new entry before the specified head.
     * This is useful for implementing queues.
     */
    static inline void list_add_tail(struct list_head *new, struct list_head *head)
    {
        __list_add(new, head->prev, head);
    }
    
    /*
     * Delete a list entry by making the prev/next entries
     * point to each other.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
        next->prev = prev;
        WRITE_ONCE(prev->next, next);
    }
    
    /**
     * list_del - deletes entry from list.
     * @entry: the element to delete from the list.
     * Note: list_empty() on entry does not return true after this, the entry is
     * in an undefined state.
     */
    #ifndef CONFIG_DEBUG_LIST
    static inline void __list_del_entry(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
    }
    
    static inline void list_del(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
        entry->next = LIST_POISON1;
        entry->prev = LIST_POISON2;
    }
    #else
    extern void __list_del_entry(struct list_head *entry);
    extern void list_del(struct list_head *entry);
    #endif
    
    /**
     * list_replace - replace old entry by new one
     * @old : the element to be replaced
     * @new : the new element to insert
     *
     * If @old was empty, it will be overwritten.
     */
    static inline void list_replace(struct list_head *old,
                    struct list_head *new)
    {
        new->next = old->next;
        new->next->prev = new;
        new->prev = old->prev;
        new->prev->next = new;
    }
    
    static inline void list_replace_init(struct list_head *old,
                        struct list_head *new)
    {
        list_replace(old, new);
        INIT_LIST_HEAD(old);
    }
    
    /**
     * list_del_init - deletes entry from list and reinitialize it.
     * @entry: the element to delete from the list.
     */
    static inline void list_del_init(struct list_head *entry)
    {
        __list_del_entry(entry);
        INIT_LIST_HEAD(entry);
    }
    
    /**
     * list_move - delete from one list and add as another's head
     * @list: the entry to move
     * @head: the head that will precede our entry
     */
    static inline void list_move(struct list_head *list, struct list_head *head)
    {
        __list_del_entry(list);
        list_add(list, head);
    }
    
    /**
     * list_move_tail - delete from one list and add as another's tail
     * @list: the entry to move
     * @head: the head that will follow our entry
     */
    static inline void list_move_tail(struct list_head *list,
                      struct list_head *head)
    {
        __list_del_entry(list);
        list_add_tail(list, head);
    }
    
    /**
     * list_is_last - tests whether @list is the last entry in list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static inline int list_is_last(const struct list_head *list,
                    const struct list_head *head)
    {
        return list->next == head;
    }
    
    /**
     * list_empty - tests whether a list is empty
     * @head: the list to test.
     */
    static inline int list_empty(const struct list_head *head)
    {
        return READ_ONCE(head->next) == head;
    }
    
    /**
     * list_empty_careful - tests whether a list is empty and not being modified
     * @head: the list to test
     *
     * Description:
     * tests whether a list is empty _and_ checks that no other CPU might be
     * in the process of modifying either member (next or prev)
     *
     * NOTE: using list_empty_careful() without synchronization
     * can only be safe if the only activity that can happen
     * to the list entry is list_del_init(). Eg. it cannot be used
     * if another CPU could re-list_add() it.
     */
    static inline int list_empty_careful(const struct list_head *head)
    {
        struct list_head *next = head->next;
        return (next == head) && (next == head->prev);
    }
    
    /**
     * list_rotate_left - rotate the list to the left
     * @head: the head of the list
     */
    static inline void list_rotate_left(struct list_head *head)
    {
        struct list_head *first;
    
        if (!list_empty(head)) {
            first = head->next;
            list_move_tail(first, head);
        }
    }
    
    /**
     * list_is_singular - tests whether a list has just one entry.
     * @head: the list to test.
     */
    static inline int list_is_singular(const struct list_head *head)
    {
        return !list_empty(head) && (head->next == head->prev);
    }
    
    static inline void __list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        struct list_head *new_first = entry->next;
        list->next = head->next;
        list->next->prev = list;
        list->prev = entry;
        entry->next = list;
        head->next = new_first;
        new_first->prev = head;
    }
    
    /**
     * list_cut_position - cut a list into two
     * @list: a new list to add all removed entries
     * @head: a list with entries
     * @entry: an entry within head, could be the head itself
     *    and if so we won't cut the list
     *
     * This helper moves the initial part of @head, up to and
     * including @entry, from @head to @list. You should
     * pass on @entry an element you know is on @head. @list
     * should be an empty list or a list you do not care about
     * losing its data.
     *
     */
    static inline void list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        if (list_empty(head))
            return;
        if (list_is_singular(head) &&
            (head->next != entry && head != entry))
            return;
        if (entry == head)
            INIT_LIST_HEAD(list);
        else
            __list_cut_position(list, head, entry);
    }
    
    static inline void __list_splice(const struct list_head *list,
                     struct list_head *prev,
                     struct list_head *next)
    {
        struct list_head *first = list->next;
        struct list_head *last = list->prev;
    
        first->prev = prev;
        prev->next = first;
    
        last->next = next;
        next->prev = last;
    }
    
    /**
     * list_splice - join two lists, this is designed for stacks
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice(const struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head, head->next);
    }
    
    /**
     * list_splice_tail - join two lists, each list being a queue
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice_tail(struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head->prev, head);
    }
    
    /**
     * list_splice_init - join two lists and reinitialise the emptied list.
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * The list at @list is reinitialised
     */
    static inline void list_splice_init(struct list_head *list,
                        struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head, head->next);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_splice_tail_init - join two lists and reinitialise the emptied list
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * Each of the lists is a queue.
     * The list at @list is reinitialised
     */
    static inline void list_splice_tail_init(struct list_head *list,
                         struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head->prev, head);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_entry - get the struct for this entry
     * @ptr:    the &struct list_head pointer.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_head within the struct.
     */
    #define list_entry(ptr, type, member) 
        container_of(ptr, type, member)
    
    /**
     * list_first_entry - get the first element from a list
     * @ptr:    the list head to take the element from.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_head within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_first_entry(ptr, type, member) 
        list_entry((ptr)->next, type, member)
    
    /**
     * list_last_entry - get the last element from a list
     * @ptr:    the list head to take the element from.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_head within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_last_entry(ptr, type, member) 
        list_entry((ptr)->prev, type, member)
    
    /**
     * list_first_entry_or_null - get the first element from a list
     * @ptr:    the list head to take the element from.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_head within the struct.
     *
     * Note that if the list is empty, it returns NULL.
     */
    #define list_first_entry_or_null(ptr, type, member) ({ 
        struct list_head *head__ = (ptr); 
        struct list_head *pos__ = READ_ONCE(head__->next); 
        pos__ != head__ ? list_entry(pos__, type, member) : NULL; 
    })
    
    /**
     * list_next_entry - get the next element in list
     * @pos:    the type * to cursor
     * @member:    the name of the list_head within the struct.
     */
    #define list_next_entry(pos, member) 
        list_entry((pos)->member.next, typeof(*(pos)), member)
    
    /**
     * list_prev_entry - get the prev element in list
     * @pos:    the type * to cursor
     * @member:    the name of the list_head within the struct.
     */
    #define list_prev_entry(pos, member) 
        list_entry((pos)->member.prev, typeof(*(pos)), member)
    
    /**
     * list_for_each    -    iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each(pos, head) 
        for (pos = (head)->next; pos != (head); pos = pos->next)
    
    /**
     * list_for_each_prev    -    iterate over a list backwards
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each_prev(pos, head) 
        for (pos = (head)->prev; pos != (head); pos = pos->prev)
    
    /**
     * list_for_each_safe - iterate over a list safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_safe(pos, n, head) 
        for (pos = (head)->next, n = pos->next; pos != (head); 
            pos = n, n = pos->next)
    
    /**
     * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_prev_safe(pos, n, head) 
        for (pos = (head)->prev, n = pos->prev; 
             pos != (head); 
             pos = n, n = pos->prev)
    
    /**
     * list_for_each_entry    -    iterate over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     */
    #define list_for_each_entry(pos, head, member)                
        for (pos = list_first_entry(head, typeof(*pos), member);    
             &pos->member != (head);                    
             pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_reverse - iterate backwards over list of given type.
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     */
    #define list_for_each_entry_reverse(pos, head, member)            
        for (pos = list_last_entry(head, typeof(*pos), member);        
             &pos->member != (head);                     
             pos = list_prev_entry(pos, member))
    
    /**
     * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
     * @pos:    the type * to use as a start point
     * @head:    the head of the list
     * @member:    the name of the list_head within the struct.
     *
     * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
     */
    #define list_prepare_entry(pos, head, member) 
        ((pos) ? : list_entry(head, typeof(*pos), member))
    
    /**
     * list_for_each_entry_continue - continue iteration over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Continue to iterate over list of given type, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue(pos, head, member)         
        for (pos = list_next_entry(pos, member);            
             &pos->member != (head);                    
             pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_continue_reverse - iterate backwards from the given point
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Start to iterate over list of given type backwards, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue_reverse(pos, head, member)        
        for (pos = list_prev_entry(pos, member);            
             &pos->member != (head);                    
             pos = list_prev_entry(pos, member))
    
    /**
     * list_for_each_entry_from - iterate over list of given type from the current point
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Iterate over list of given type, continuing from current position.
     */
    #define list_for_each_entry_from(pos, head, member)             
        for (; &pos->member != (head);                    
             pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     */
    #define list_for_each_entry_safe(pos, n, head, member)            
        for (pos = list_first_entry(head, typeof(*pos), member),    
            n = list_next_entry(pos, member);            
             &pos->member != (head);                     
             pos = n, n = list_next_entry(n, member))
    
    /**
     * list_for_each_entry_safe_continue - continue list iteration safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Iterate over list of given type, continuing after current point,
     * safe against removal of list entry.
     */
    #define list_for_each_entry_safe_continue(pos, n, head, member)         
        for (pos = list_next_entry(pos, member),                 
            n = list_next_entry(pos, member);                
             &pos->member != (head);                        
             pos = n, n = list_next_entry(n, member))
    
    /**
     * list_for_each_entry_safe_from - iterate over list from current point safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Iterate over list of given type from current point, safe against
     * removal of list entry.
     */
    #define list_for_each_entry_safe_from(pos, n, head, member)             
        for (n = list_next_entry(pos, member);                    
             &pos->member != (head);                        
             pos = n, n = list_next_entry(n, member))
    
    /**
     * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_head within the struct.
     *
     * Iterate backwards over list of given type, safe against removal
     * of list entry.
     */
    #define list_for_each_entry_safe_reverse(pos, n, head, member)        
        for (pos = list_last_entry(head, typeof(*pos), member),        
            n = list_prev_entry(pos, member);            
             &pos->member != (head);                     
             pos = n, n = list_prev_entry(n, member))
    
    /**
     * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
     * @pos:    the loop cursor used in the list_for_each_entry_safe loop
     * @n:        temporary storage used in list_for_each_entry_safe
     * @member:    the name of the list_head within the struct.
     *
     * list_safe_reset_next is not safe to use in general if the list may be
     * modified concurrently (eg. the lock is dropped in the loop body). An
     * exception to this is if the cursor element (pos) is pinned in the list,
     * and list_safe_reset_next is called after re-taking the lock and before
     * completing the current iteration of the loop body.
     */
    #define list_safe_reset_next(pos, n, member)                
        n = list_next_entry(pos, member)
    
        
    #endif

    2,测试代码

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #if 1  
    
    typedef struct USER_DATA
    {  
        int key;  
        int param;  
    
        struct list_head list;
    }USER_DATA_ST;  
    
    //LIST_HEAD(my_list);
    
    struct list_head my_list;
    
    #define ARRAY_SIZE 32
    
    int main()  
    {  
        int i;  
        struct list_head *tmp;
        struct list_head *tmp2;
        struct USER_DATA *pstListNode = NULL;
      
        printf("
     init  : ");  
        INIT_LIST_HEAD(&my_list);
        srand(time(NULL));    
        for(i = 0; i < ARRAY_SIZE; i++) {  
            pstListNode = malloc(sizeof(USER_DATA_ST));
            if (NULL == pstListNode) return 0;
    
            pstListNode->key = i;
            pstListNode->param = rand()%ARRAY_SIZE;  
            list_add_tail(&pstListNode->list, &my_list);
        }  
        
        printf("
     walk: ");  
        list_for_each(tmp, &my_list)
        {
            pstListNode = list_entry(tmp, struct USER_DATA, list);
            printf("[%d]=%d ", pstListNode->key, pstListNode->param);
        }
    
        printf("
     delete: ");  
        list_for_each_safe(tmp, tmp2, &my_list)
        {
            pstListNode = list_entry(tmp, struct USER_DATA, list);
            if (pstListNode->param % 3 == 0) {
                printf("[%d]=%d ", pstListNode->key, pstListNode->param);
                list_del_init(&pstListNode->list);
                free(pstListNode);
            }
        }
    
        printf("
     walk: ");  
        list_for_each(tmp, &my_list)
        {
            pstListNode = list_entry(tmp, struct USER_DATA, list);
            printf("[%d]%d ", pstListNode->key, pstListNode->param);
        }
    
        printf("
     destroy: ");  
        list_for_each_safe(tmp, tmp2, &my_list)
        {
            pstListNode = list_entry(tmp, struct USER_DATA, list);
            list_del_init(&pstListNode->list);
            free(pstListNode);
        }
          
        return 0;  
    } 
    
    
    #endif
  • 相关阅读:
    Ubuntu 18.04.2 LTS美化方案
    Ubuntu 16.04升级18.04
    Spark性能优化指南——高级篇
    Spark性能优化指南——基础篇
    遗传算法(Genetic Algorithm)——基于Java实现
    Linux sar命令参数详解
    Gdb调试多进程程序
    P8.打印整数
    Algorithm Book Index
    Debugging with GDB (8) 4.10 Debugging Programs with Multiple Threads
  • 原文地址:https://www.cnblogs.com/soul-stone/p/6858611.html
Copyright © 2011-2022 走看看