zoukankan      html  css  js  c++  java
  • Spark Streaming从Flume Poll数据案例实战和内幕源码解密

    本节课分成二部分讲解:

    一、Spark Streaming on Polling from Flume实战

    二、Spark Streaming on Polling from Flume源码

    第一部分:

    推模式(Flume push SparkStreaming) VS 拉模式(SparkStreaming poll Flume)

    采用推模式:推模式的理解就是Flume作为缓存,存有数据。监听对应端口,如果服务可以链接,就将数据push过去。(简单,耦合要低),缺点是SparkStreaming 程序没有启动的话,Flume端会报错,同时会导致Spark Streaming 程序来不及消费的情况。

    采用拉模式:拉模式就是自己定义一个sink,SparkStreaming自己去channel里面取数据,根据自身条件去获取数据,稳定性好。

    Flume poll 实战:

    1.Flume poll 配置

    进入http://spark.apache.org/docs/latest/streaming-flume-integration.html官网,下载

    spark-streaming-flume-sink_2.10-1.6.0.jar、scala-library-2.10.5.jar、commons-lang3-3.3.2.jar三个包:

     

    将下载后的三个jar包放入Flume安装lib目录:

     

    配置Flume conf环境参数:

    编写业务代码:

    public class SparkStreamingPollDataFromFlume {

              public static void main(String[] args) {

                        /*

                         * 第一步:配置SparkConf:

                         * 1,至少2条线程:因为Spark Streaming应用程序在运行的时候,至少有一条

                         * 线程用于不断的循环接收数据,并且至少有一条线程用于处理接受的数据(否则的话无法

                         * 有线程用于处理数据,随着时间的推移,内存和磁盘都会不堪重负);

                         * 2,对于集群而言,每个Executor一般肯定不止一个Thread,那对于处理Spark Streaming的

                         * 应用程序而言,每个Executor一般分配多少Core比较合适?根据我们过去的经验,5个左右的

                         * Core是最佳的(一个段子分配为奇数个Core表现最佳,例如3个、5个、7个Core等);

                         */

                        SparkConf conf = new SparkConf().setAppName("SparkStreamingPollDataFromFlume").setMaster("local[2]");

                        /*

                         * 第二步:创建SparkStreamingContext:

                         * 1,这个是SparkStreaming应用程序所有功能的起始点和程序调度的核心

                         * SparkStreamingContext的构建可以基于SparkConf参数,也可基于持久化的SparkStreamingContext的内容

                         * 来恢复过来(典型的场景是Driver崩溃后重新启动,由于Spark Streaming具有连续7*24小时不间断运行的特征,

                         * 所有需要在Driver重新启动后继续上衣系的状态,此时的状态恢复需要基于曾经的Checkpoint);

                         * 2,在一个Spark Streaming应用程序中可以创建若干个SparkStreamingContext对象,使用下一个SparkStreamingContext

                         * 之前需要把前面正在运行的SparkStreamingContext对象关闭掉,由此,我们获得一个重大的启发SparkStreaming框架也只是

                         * Spark Core上的一个应用程序而已,只不过Spark Streaming框架箱运行的话需要Spark工程师写业务逻辑处理代码;

                         */

                        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(30));

                        /*

                         * 第三步:创建Spark Streaming输入数据来源input Stream:

                         * 1,数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等

                         * 2, 在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口

                         *                  的数据(当然该端口服务首先必须存在),并且在后续会根据业务需要不断的有数据产生(当然对于Spark Streaming

                         *                  应用程序的运行而言,有无数据其处理流程都是一样的);

                         * 3,如果经常在每间隔5秒钟没有数据的话不断的启动空的Job其实是会造成调度资源的浪费,因为并没有数据需要发生计算,所以

                         *                 实例的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;

                         */                 

                        JavaReceiverInputDStream lines = FlumeUtils.createPollingStream(jsc, "Master", 9999);           

                        /*

                         * 第四步:接下来就像对于RDD编程一样基于DStream进行编程!!!原因是DStream是RDD产生的模板(或者说类),在Spark Streaming具体

                         * 发生计算前,其实质是把每个Batch的DStream的操作翻译成为对RDD的操作!!!

                         *对初始的DStream进行Transformation级别的处理,例如map、filter等高阶函数等的编程,来进行具体的数据计算

                   *    第4.1步:讲每一行的字符串拆分成单个的单词

                   */

                        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<SparkFlumeEvent, String>() { //如果是Scala,由于SAM转换,所以可以写成val words = lines.flatMap { line => line.split(" ")}

                                   @Override

                                   public Iterable<String> call(SparkFlumeEvent event) throws Exception {

                                             String line = new String(event.event().getBody().array());

                                             return Arrays.asList(line.split(" "));

                                   }

                        });

                         /*

                     * 第四步:对初始的DStream进行Transformation级别的处理,例如map、filter等高阶函数等的编程,来进行具体的数据计算

                     * 第4.2步:在单词拆分的基础上对每个单词实例计数为1,也就是word => (word, 1)

                     */

                        JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {

                                   @Override

                                   public Tuple2<String, Integer> call(String word) throws Exception {

                                             return new Tuple2<String, Integer>(word, 1);

                                   }

                        });           

                         /*

                     * 第四步:对初始的DStream进行Transformation级别的处理,例如map、filter等高阶函数等的编程,来进行具体的数据计算

                     * 第4.3步:在每个单词实例计数为1基础之上统计每个单词在文件中出现的总次数

                     */

                        JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { //对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce)     

                                   @Override

                                   public Integer call(Integer v1, Integer v2) throws Exception {

                                             return v1 + v2;

                                   }

                        });

                        /*

                         *        此处的print并不会直接出发Job的执行,因为现在的一切都是在Spark Streaming框架的控制之下的,对于Spark Streaming

                         *        而言具体是否触发真正的Job运行是基于设置的Duration时间间隔的

                         *        诸位一定要注意的是Spark Streaming应用程序要想执行具体的Job,对Dtream就必须有output Stream操作,

                         *        output Stream有很多类型的函数触发,类print、saveAsTextFile、saveAsHadoopFiles等,最为重要的一个

                         *        方法是foraeachRDD,因为Spark Streaming处理的结果一般都会放在Redis、DB、DashBoard等上面,foreachRDD

                         *        主要就是用用来完成这些功能的,而且可以随意的自定义具体数据到底放在哪里!!!

                         *

                         */

                        wordsCount.print();

                        /*

                         * Spark Streaming执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于

                         * 接受应用程序本身或者Executor中的消息;

                         */

                        jsc.start();                

                        jsc.awaitTermination();

                        jsc.close();

              }

    启动HDFS集群:

    启动运行Flume:

    启动eclipse下的应用程序:

    copy测试文件hellospark.txt到Flume flume-conf.properties配置文件中指定的/usr/local/flume/tmp/TestDir目录下:

    隔30秒后可以在eclipse程序控制台中看到上传的文件单词统计结果。

    第二部分:源码分析

    1、创建createPollingStream (FlumeUtils.scala )

    注意:默认的存储方式是MEMORY_AND_DISK_SER_2

    /**

     * Creates an input stream that is to be used with the Spark Sink deployed on a Flume agent.

     * This stream will poll the sink for data and will pull events as they are available.

     * This stream will use a batch size of 1000 events and run 5 threads to pull data.

     * @param hostname Address of the host on which the Spark Sink is running

     * @param port Port of the host at which the Spark Sink is listening

     * @param storageLevel Storage level to use for storing the received objects

    */

    def createPollingStream(

        ssc: StreamingContext,

        hostname: String,

        port: Int,

        storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2

      ): ReceiverInputDStream[SparkFlumeEvent] = {

      createPollingStream(ssc, Seq(new InetSocketAddress(hostname, port)), storageLevel)

    }

    2、参数配置:默认的全局参数,private 级别配置无法修改

    private val DEFAULT_POLLING_PARALLELISM = 5

    private val DEFAULT_POLLING_BATCH_SIZE = 1000

    /**

     * Creates an input stream that is to be used with the Spark Sink deployed on a Flume agent.

     * This stream will poll the sink for data and will pull events as they are available.

     * This stream will use a batch size of 1000 events and run 5 threads to pull data.

     * @param addresses List of InetSocketAddresses representing the hosts to connect to.

     * @param storageLevel Storage level to use for storing the received objects

     */

    def createPollingStream(

        ssc: StreamingContext,

        addresses: Seq[InetSocketAddress],

        storageLevel: StorageLevel

      ): ReceiverInputDStream[SparkFlumeEvent] = {

      createPollingStream(ssc, addresses, storageLevel,

        DEFAULT_POLLING_BATCH_SIZE, DEFAULT_POLLING_PARALLELISM)

    }

    3、创建FlumePollingInputDstream对象

    /**

     * Creates an input stream that is to be used with the Spark Sink deployed on a Flume agent.

     * This stream will poll the sink for data and will pull events as they are available.

     * @param addresses List of InetSocketAddresses representing the hosts to connect to.

     * @param maxBatchSize Maximum number of events to be pulled from the Spark sink in a

     *                     single RPC call

     * @param parallelism Number of concurrent requests this stream should send to the sink. Note

     *                    that having a higher number of requests concurrently being pulled will

     *                    result in this stream using more threads

     * @param storageLevel Storage level to use for storing the received objects

     */

    def createPollingStream(

        ssc: StreamingContext,

        addresses: Seq[InetSocketAddress],

        storageLevel: StorageLevel,

        maxBatchSize: Int,

        parallelism: Int

      ): ReceiverInputDStream[SparkFlumeEvent] = {

      new FlumePollingInputDStream[SparkFlumeEvent](ssc, addresses, maxBatchSize,

        parallelism, storageLevel)

    }

    4、继承自ReceiverInputDstream并覆写getReciver方法,调用FlumePollingReciver接口

    private[streaming] class FlumePollingInputDStream[T: ClassTag](

        _ssc: StreamingContext,

        val addresses: Seq[InetSocketAddress],

        val maxBatchSize: Int,

        val parallelism: Int,

        storageLevel: StorageLevel

      ) extends ReceiverInputDStream[SparkFlumeEvent](_ssc) {

       override def getReceiver(): Receiver[SparkFlumeEvent] = {

        new FlumePollingReceiver(addresses, maxBatchSize, parallelism, storageLevel)

      }

    }

    5、ReceiverInputDstream 构建了一个线程池,设置为后台线程;并使用lazy和工厂方法创建线程和NioClientSocket(NioClientSocket底层使用NettyServer的方式)

    lazy val channelFactoryExecutor =

      Executors.newCachedThreadPool(new ThreadFactoryBuilder().setDaemon(true).

        setNameFormat("Flume Receiver Channel Thread - %d").build())

    lazy val channelFactory =

      new NioClientSocketChannelFactory(channelFactoryExecutor, channelFactoryExecutor)

    6、receiverExecutor 内部也是线程池;connections是指链接分布式Flume集群的FlumeConnection实体句柄的个数,线程拿到实体句柄访问数据。

    lazy val receiverExecutor = Executors.newFixedThreadPool(parallelism,

      new ThreadFactoryBuilder().setDaemon(true).setNameFormat("Flume Receiver Thread - %d").build())

    private lazy val connections = new LinkedBlockingQueue[FlumeConnection]()

    7、启动时创建NettyTransceiver,根据并行度(默认5个)循环提交FlumeBatchFetcher

    override def onStart(): Unit = {

      // Create the connections to each Flume agent.

      addresses.foreach(host => {

        val transceiver = new NettyTransceiver(host, channelFactory)

        val client = SpecificRequestor.getClient(classOf[SparkFlumeProtocol.Callback], transceiver)

        connections.add(new FlumeConnection(transceiver, client))

      })

      for (i <- 0 until parallelism) {

        logInfo("Starting Flume Polling Receiver worker threads..")

        // Threads that pull data from Flume.

        receiverExecutor.submit(new FlumeBatchFetcher(this))

      }

    }

    8、FlumeBatchFetcher run方法中从Receiver中获取connection链接句柄ack跟消息确认有关

    def run(): Unit = {

      while (!receiver.isStopped()) {

        val connection = receiver.getConnections.poll()

        val client = connection.client

        var batchReceived = false

        var seq: CharSequence = null

        try {

          getBatch(client) match {

            case Some(eventBatch) =>

              batchReceived = true

              seq = eventBatch.getSequenceNumber

              val events = toSparkFlumeEvents(eventBatch.getEvents)

              if (store(events)) {

                sendAck(client, seq)

              } else {

                sendNack(batchReceived, client, seq)

              }

            case None =>

          }

        } catch {

    9、获取一批一批数据方法

    /**

     * Gets a batch of events from the specified client. This method does not handle any exceptions

     * which will be propogated to the caller.

     * @param client Client to get events from

     * @return [[Some]] which contains the event batch if Flume sent any events back, else [[None]]

     */

    private def getBatch(client: SparkFlumeProtocol.Callback): Option[EventBatch] = {

      val eventBatch = client.getEventBatch(receiver.getMaxBatchSize)

      if (!SparkSinkUtils.isErrorBatch(eventBatch)) {

        // No error, proceed with processing data

        logDebug(s"Received batch of ${eventBatch.getEvents.size} events with sequence " +

          s"number: ${eventBatch.getSequenceNumber}")

        Some(eventBatch)

      } else {

        logWarning("Did not receive events from Flume agent due to error on the Flume agent: " +

          eventBatch.getErrorMsg)

        None

      }

    }

    总结:

    88课

    备注:

    资料来源于:DT_大数据梦工厂(IMF传奇行动绝密课程)

    更多私密内容,请关注微信公众号:DT_Spark

  • 相关阅读:
    decimal和numeric的用法
    Asp.net之缓存(一)
    对DataList控件绑定图片的一点小结
    Asp.net Ajax初学中遇到的版本错误及求解决方案
    TreeView的动态显示及利用框架实现导航
    linux CentOS7 防火墙设置
    SpringBoot返回JSON日期格式问题
    SpringBoot上传文件大小限制
    Winform的技巧琐碎总结简单打印功能实现
    C#的基础琐碎总结事件
  • 原文地址:https://www.cnblogs.com/sparkbigdata/p/5448673.html
Copyright © 2011-2022 走看看