一.系统性能定义
-
Throughput ,吞吐量。也就是每秒钟可以处理的请求数,任务数。
-
Latency
主要受上边两个因素的影响
-
THroughput越大,Latency会越差.因为请求量过大,系统繁忙,响应速度很慢
-
Latency越好,能支持的Throughput就会越高.因为Latency短说明处理速度快,于是就可以处理更多的请求.
二.系统性能测试
-
首先,需要定义Latency这个值,比如说,对于网站系统响应时间必需是5秒以内(对于某些实时系统可能需要定义的更短,比如5ms以内,这个更根据不同的业务来定义)
-
其次,开发性能测试工具,一个工具用来制造高强度的Throughput,另一个工具用来测量Latency。对于第一个工具,你可以参考一下“
-
最后,开始性能测试。你需要不断地提升测试的Throughput,然后观察系统的负载情况,如果系统顶得住,那就观察Latency的值。这样,你就可以找到系统的最大负载,并且你可以知道系统的响应延时是多少。(这是压测的样子,压测和性能都有这个)
再多说一些,
-
关于Latency,如果吞吐量很少,这个值估计会非常稳定,当吞吐量越来越大时,系统的Latency会出现非常剧烈的抖动,所以,我们在测量Latency的时候,我们需要注意到Latency的分布,也就是说,有百分之几的在我们允许的范围,有百分之几的超出了,有百分之几的完全不可接受。也许,平均下来的Latency达标了,但是其中仅有50%的达到了我们可接受的范围。那也没有意义。
-
关于性能测试,我们还需要定义一个时间段。比如:在某个吞吐量上持续15分钟。因为当负载到达的时候,系统会变得不稳定,当过了一两分钟后,系统才会稳定。另外,也有可能是,你的系统在这个负载下前几分钟还表现正常,然后就不稳定了,甚至垮了。所以,需要这么一段时间。这个值,我们叫做峰值极限
-
性能测试还需要做Soak Test,也就是在某个吞吐量下,系统可以持续跑一周甚至更长。这个值,我们叫做系统的正常运行的负载极限。
阶段总结:性能测试有很多很复要的东西,比如:burst test等。 这里不能一一详述,这里只说了一些和性能调优相关的东西。总之,性能测试是一细活和累活。
三、定位性能瓶颈(比较重要的)
查看操作系统负载
思路:
当我们系统有问题的时候,我们不要急于去调查我们代码,这个毫无意义。我们首要需要看的是操作系统的报告。看看操作系统的CPU利用率,看看内存使用率,看看操作系统的IO,还有网络的IO,网络链接数,等等。Windows下的perfmon是一个很不错的工具,Linux下也有很多相关的命令和工具,比如:
1.先看CPU利用率,如果CPU利用率不高,但是系统的Throughput和Latency上不去了,这说明我们的程序并没有忙于计算,而是忙于别的一些事,比如IO。(另外,CPU的利用率还要看内核态的和用户态的,内核态的一上去了,整个系统的性能就下来了。而对于多核CPU来说,CPU 0 是相当关键的,如果CPU 0的负载高,那么会影响其它核的性能,因为CPU各核间是需要有调度的,这靠CPU0完成)
2)然后,我们可以看一下IO大不大,IO和CPU一般是反着来的,CPU利用率高则IO不大,IO大则CPU就小。关于IO,我们要看三个事,一个是磁盘文件IO,一个是驱动程序的IO(如:网卡),一个是内存换页率。这三个事都会影响系统性能。
3)然后,查看一下网络带宽使用情况,在Linux下,你可以使用iftop, iptraf, ntop, tcpdump这些命令来查看。或是用Wireshark来查看。
4)如果CPU不高,IO不高,内存使用不高,网络带宽使用不高。但是系统的性能上不去。这说明你的程序有问题,比如,你的程序被阻塞了。可能是因为等那个锁,可能是因为等某个资源,或者是在切换上下文。
使用Profiler测试
接下来,我们需要使用性能检测工具,也就是使用某个Profiler来差看一下我们程序的运行性能。如:Java的JProfiler/TPTP/CodePro Profiler,GNU的gprof,IBM的PurifyPlus,Intel的VTune,AMD的CodeAnalyst,还有Linux下的OProfile/perf,后面两个可以让你对你的代码优化到CPU的微指令级别,如果你关心CPU的L1/L2的缓存调优,那么你需要考虑一下使用VTune。 使用这些Profiler工具,可以让你程序中各个模块函数甚至指令的很多东西,如:运行的时间 ,调用的次数,CPU的利用率,等等。这些东西对我们来说非常有用。
我们重点观察运行时间最多,调用次数最多的那些函数和指令。这里注意一下,对于调用次数多但是时间很短的函数,你可能只需要轻微优化一下,你的性能就上去了(比如:某函数一秒种被调用100万次,你想想如果你让这个函数提高0.01毫秒的时间 ,这会给你带来多大的性能)
关于代码定位的术
使用Profiler有个问题我们需要注意一下,因为Profiler会让你的程序运行的性能变低,像PurifyPlus这样的工具会在你的代码中插入很多代码,会导致你的程序运行效率变低,从而没发测试出在高吞吐量下的系统的性能,对此,一般有两个方法来定位系统瓶颈:
1)在你的代码中自己做统计,使用微秒级的计时器和函数调用计算器,每隔10秒把统计log到文件中。
2)分段注释你的代码块,让一些函数空转,做Hard Code的Mock,然后再测试一下系统的Throughput和Latency是否有质的变化,如果有,那么被注释的函数就是性能瓶颈,再在这个函数体内注释代码,直到找到最耗性能的语句。
最后再说一点,对于性能测试,不同的Throughput会出现不同的测试结果,不同的测试数据也会有不同的测试结果。所以,用于性能测试的数据非常重要,性能测试中,我们需要观测试不同Throughput的结果。
四、常见的系统瓶颈
用空间换时间
各种cache如CPU L1/L2/RAM到硬盘,都是用空间来换时间的策略。这样策略基本上是把计算的过程一步一步的保存或缓存下来,这样就不用每次用的时候都要再计算一遍,比如数据缓冲,CDN,等
用时间换空间
有时候,少量的空间可能性能会更好,比如网络传输,如果有一些压缩数据的算法(如前些天说的“
简化代码
最高效的程序就是不执行任何代码的程序,所以,代码越少性能就越高。关于代码级优化的技术大学里的教科书有很多示例了。如:减少循环的层数,减少递归,在循环中少声明变量,少做分配和释放内存的操作,尽量把循环体内的表达式抽到循环外,条件表达的中的多个条件判断的次序,尽量在程序启动时把一些东西准备好,注意函数调用的开销(栈上开销),注意面向对象语言中临时对象的开销,小心使用异常(不要用异常来检查一些可接受可忽略并经常发生的错误),…… 等等,等等,这连东西需要我们非常了解编程语言和常用的库。
并行处理
如果CPU只有一个核,你要玩多进程,多线程,对于计算密集型的软件会反而更慢(因为操作系统调度和切换开销很大),CPU的核多了才能真正体现出多进程多线程的优势。并行处理需要我们的程序有Scalability,不能水平或垂直扩展的程序无法进行并行处理。从架构上来说,这表再为——是否可以做到不改代码只是加加机器就可以完成性能提升?
作者的笑笑总结:根据2:8原则来说,20%的代码耗了你80%的性能,找到那20%的代码,你就可以优化那80%的性能。
算法调优
算法非常重要,好的算法会有更好的性能,举几个我经历过的项目的例子,大家可以感受一下.
-
一个是过滤算法,系统需要对收到的请求做过滤,我们把可以被filter in/out的东西配置在了一个文件中,原有的过滤算法是遍历过滤配置,后来,我们找到了一种方法可以对这个过滤配置进行排序,这样就可以用二分折半的方法来过滤,系统性能增加了50%。
-
一个是哈希算法。计算哈希算法的函数并不高效,一方面是计算太费时,另一方面是碰撞太高,碰撞高了就跟单向链表一个性能(可参看
-
分而治之和预处理。以前有一个程序为了生成月报表,每次都需要计算很长的时间,有时候需要花将近一整天的时间。于是我们把我们找到了一种方法可以把这个算法发成增量式的,也就是说我每天都把当天的数据计算好了后和前一天的报表合并,这样可以大大的节省计算时间,每天的数据计算量只需要20分钟,但是如果我要算整个月的,系统则需要10个小时以上(SQL语句在大数据量面前性能成级数性下降)。这种分而治之的思路在大数据面前对性能有很帮助,就像merge排序一样。SQL语句和数据库的性能优化也是这一策略,如:使用嵌套式的Select而不是笛卡尔积的Select,使用视图,等等。
代码调优
字符串操作
一个例子是,我(作者)以前有个同事把一些状态码用字符串来处理,他的理由是,这样可以在界面上直接显示,后来性能调优的时候,我把这些状态码全改成整型,然后用位操作查状态,因为有一个每秒钟被调用了150K次的函数里面有三处需要检查状态,经过改善以后,整个系统的性能上升了30%左右。
多线程调优
对于Java对象的引用计数,如果我猜的没错的话,到处都是锁,所以,Java的性能问题一直是个问题。
内存分配
不要小看程序的内存分配。malloc/realloc/calloc这样的系统调非常耗时,尤其是当内存出现碎片的时候。
异步操作
我们知道Unix下的文件操作是有block和non-block的方式的,像有些系统调用也是block式的,如:Socket下的select,Windows下的WaitforObject之类的,如果我们的程序是同步操作,那么会非常影响性能,我们可以改成异步的,但是改成异步的方式会让你的程序变复杂。异步方式一般要通过队列,要注间队列的性能问题,另外,异步下的状态通知通常是个问题,比如消息事件通知方式,有callback方式,等,这些方式同样可能会影响你的性能
语言和代码库
略
网络调优(概念股)
TCP调优
一般来说一个系统可以支持的TCP链接数是有限的,我们需要清楚地认识到TCP链接对系统的开销是很大的,比如著名的SYNC Flood攻击
UDP调优
说到UDP的调优,有一些事我想重点说一样,那就是MTU——最大传输单元(其实这对TCP也一样,因为这是链路层上的东西)
网卡调优
略
其它网络性能
关于多路复用技术,也就是用一个线程来管理所有的TCP链接,有三个系统调用要重点注意:一个是select,这个系统调用只支持上限1024个链接,第二个是poll,其可以突破1024的限制,但是select和poll本质上是使用的轮询机制,轮询机制在链接多的时候性能很差,因主是O(n)的算法,所以,epoll出现了,epoll是操作系统内核支持的,仅当在链接活跃时,操作系统才会callback,这是由操作系统通知触发的,但其只有Linux Kernel 2.6以后才支持(准确说是2.5.44中引入的),当然,如果所有的链接都是活跃的,过多的使用epoll_ctl可能会比轮询的方式还影响性能,不过影响的不大
系统调优
I/O模型
前面说到过select/poll/epoll这三个系统调用,我们都知道,Unix/Linux下把所有的设备都当成文件来进行I/O,所以,那三个操作更应该算是I/O相关的系统调用。说到 I/O模型,这对于我们的I/O性能相当重要,我们知道,Unix/Linux经典的I/O方式是(关于Linux下的I/O模型,大家可以读一下这篇文章《
第一种,同步阻塞式I/O,这个不说了。
第二种,同步无阻塞方式。其通过fctnl设置 O_NONBLOCK 来完成。
第三种,对于select/poll/epoll这三个是I/O不阻塞,但是在事件上阻塞,算是:I/O异步,事件同步的调用。
第四种,AIO方式。这种I/O 模型是一种处理与 I/O 并行的模型。I/O请求会立即返回,说明请求已经成功发起了。在后台完成I/O操作时,向应用程序发起通知,通知有两种方式:一种是产生一个信号,另一种是执行一个基于线程的回调函数来完成这次 I/O 处理过程。
多核*CPU*调优
关于CPU的多核技术,我们知道,CPU0是很关键的,如果0号CPU被用得过狠的话,别的CPU性能也会下降,因为CPU0是有调整功能的,所以,我们不能任由操作系统负载均衡,因为我们自己更了解自己的程序,所以,我们可以手动地为其分配CPU核,而不会过多地占用CPU0,或是让我们关键进程和一堆别的进程挤在一起。
数据库调优
数据库调优是比较重要的
1.数据库引擎调优
数据库的锁的方式
这个非常非常地重要。并发情况下,锁是非常非常影响性能的。各种隔离级别,行锁,表锁,页锁,读写锁,事务锁,以及各种写优先还是读优先机制,不要锁性能最高,分库分表,冗余数据,减少一致性事务处理,可以有效地提高性能。NoSQL就是牺牲了一致性和事务处理,并冗余数据,从而达到了分布式和高性能。
1)数据库的存储机制
不但要搞清楚各种类型字段是怎么存储的,更重要的是数据库的数据存储方式,是怎么分区的,是怎么管理的,比如Oracle的数据文件,表空间,段,等等。了解清楚这个机制可以减轻很多的I/O负载。比如:MySQL下使用show engines;可以看到各种存储引擎的支持。不同的存储引擎有不同的侧重点,针对不同的业务或数据库设计会让你有不同的性能。
2)SQL语句优化
还可以使用explain来看看SQL语句最终Execution Plan会是什么样的;优其应对那些多表查询的SQL语句,那是相当的耗内存。
下面我根据(作者)有限的数据库SQL的知识说几个会有性能问题的SQL:
全表检索
比如:select * from user where lastname = “xxxx”,这样的SQL语句基本上是全表查找,线性复杂度O(n),记录数越多,性能也越差(如:100条记录的查找要50ms,一百万条记录需要5分钟)。对于这种情况,我们可以有两种方法提高性能:一种方法是分表,把记录数降下来,另一种方法是建索引(为lastname建索引)。索引就像是key-value的数据结构一样,key就是where后面的字段,value就是物理行号,对索引的搜索复杂度是基本上是O(log(n)) ——用B-Tree实现索引(如:100条记录的查找要50ms,一百万条记录需要100ms)。
索引
对于索引字段,最好不要在字段上做计算、类型转换、函数、空值判断、字段连接操作,这些操作都会破坏索引原本的性能。当然,索引一般都出现在Where或是Order by字句中,所以对Where和Order by子句中的子段最好不要进行计算操作,或是加上什么NOT之类的,或是使用什么函数。
多表查询
关系型数据库最多的操作就是多表查询,多表查询主要有三个关键字,EXISTS,IN和JOIN(关于各种join,可以参看
JOIN操作
有人说,Join表的顺序会影响性能,只要Join的结果集是一样,性能和join的次序无关。因为后台的数据库引擎会帮我们优化的。Join有三种实现算法,嵌套循环,排序归并,和Hash式的Join。(MySQL只支持第一种,格老子记到)
-
嵌套循环,就好像是我们常见的多重嵌套循环。注意,前面的索引说过,数据库的索引查找算法用的是B-Tree,这是O(log(n))的算法,所以,整个算法复法度应该是O(log(n)) * O(log(m)) 这样的。
-
Hash式的Join,主要解决嵌套循环的O(log(n))的复杂,使用一个临时的hash表来标记。
-
排序归并,意思是两个表按照查询字段排好序,然后再合并。当然,索引字段一般是排好序的
部分结果集
我们知道MySQL里的Limit关键字,Oracle里的rownum,SQL Server里的Top都是在限制前几条的返回结果
字符串
正如我前面所说的,字符串操作对性能上有非常大的恶梦,所以,能用数据的情况就用数字,比如:时间,工号,等
全文检索
千万不要用Like之类的东西来做全文检索,如果要玩全文检索,可以尝试使用
其它高手的操作
-
不要select *,而是明确指出各个字段,如果有多个表,一定要在字段名前加上表名,不要让引擎去算。
-
不要用Having,因为其要遍历所有的记录。性能差得不能再差。
-
尽可能地使用UNION ALL 取代 UNION。
-
索引过多,insert和delete就会越慢。而update如果update多数索引,也会慢,但是如果只update一个,则只会影响一个索引表。