数据很小,n = 20,这个应该可以直接搜索吧,我没试,我用的是折半搜索+二分+线段树维护区间最值,折半搜索就是先搜前10个,然后搜后10个,搜前10个的时候把每一个结果用一个pair<花费,权值>保存下来,然后按照花费排序,在第二次搜索的时候对于当前ww , vv需要的是一个前面搜索满足条件v<=m - vv的ww的最大值,然后就用一个线段树维护就行
#pragma GCC optimize("Ofast","unroll-loops","omit-frame-pointer","inline")
#pragma GCC optimize(3 , "Ofast" , "inline")
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization("unroll-loops")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <vector>
#include <map>
#include <list>
#include <queue>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <stack>
#include <set>
#include <bitset>
#include <deque>
using namespace std ;
#define ios ios::sync_with_stdio(false) , cin.tie(0)
#define x first
#define y second
#define pb push_back
#define ls rt << 1
#define rs rt << 1 | 1
typedef long long ll ;
const double esp = 1e-6 , pi = acos(-1) ;
typedef pair<ll , ll> PII ;
const int N = 1e6 + 10 , INF = 0x3f3f3f3f , mod = 1e9 + 7;
int ca = 0 ;
ll c[30][6] , w[30][6] , a[40] ;
ll n , m ;
PII b[N] ;
int cnt = 0 ;
ll maxn[N] ;
void up(int rt) {
maxn[rt] = max(maxn[ls] , maxn[rs]) ;
return ;
}
void build(int rt , int l , int r) {
if(l == r) {
maxn[rt] = b[l].y ;
return ;
}
int mid = l + r >> 1 ;
build(ls , l , mid) ;
build(rs , mid + 1 , r) ;
up(rt) ;
return ;
}
ll ask(int rt , int l , int r , int ql , int qr) {
if(ql <= l && r <= qr ) {
return maxn[rt] ;
}
ll ans = -1e18 ;
int mid = l + r >> 1;
if(ql <= mid) ans = max(ans , ask(ls , l , mid , ql , qr)) ;
if(qr > mid) ans = max(ans , ask(rs , mid + 1 , r , ql , qr)) ;
return ans ;
}
void dfs(int u , ll ww , ll vv) {
if(u == n / 2 + 1) {
b[++ cnt] = {vv , ww} ;
return ;
}
for(int i = 0 ;i <= a[u] ;i ++ )
if(vv + c[u][i] <= m)
dfs(u +1 , ww + w[u][i] , vv + c[u][i]) ;
return ;
}
ll ans = 0 ;
void dfs1(int u , ll ww , ll vv) {
if(u == n + 1) {
ll t ;
int l = 1 , r = cnt ;
while(l <= r) {
int mid = l + r >> 1 ;
if(b[mid].x <= m - vv) l = mid + 1 , t = mid ;
else r = mid - 1;
}
if(t >= 1)
{
ll res = ask(1 , 1 , cnt , 1 , t) ;
ans = max(ans , ww + res) ;
}
return ;
}
for(int i = 0 ;i <= a[u] ;i ++ )
if(vv + c[u][i] <= m)
dfs1(u +1 , ww + w[u][i] , vv + c[u][i]) ;
return ;
}
int work()
{
cin >> n >> m ;
cnt = 0 ;
for(int i = 1; i <= n ;i ++ ) {
ll ww , vv , k ;
cin >> a[i] ;
for(int j = 1; j <= a[i] ;j ++ ) {
cin >> ww >> vv ;
w[i][j] = w[i][j - 1] + ww ;
c[i][j] = c[i][j - 1] + vv ;
}
}
ans = 0 ;
dfs(1 , 0 , 0) ;
sort(b + 1 , b + cnt + 1) ;
build(1 , 1 , cnt) ;
dfs1(n / 2 + 1 , 0 , 0) ;
printf("Case #%d: %lld
" , ++ ca , ans) ;
return 0 ;
}
int main()
{
// freopen("C://Users//spnooyseed//Desktop//in.txt" , "r" , stdin) ;
// freopen("C://Users//spnooyseed//Desktop//out.txt" , "w" , stdout) ;
int n ;
cin >> n ;
while(n --)
work() ;
return 0 ;
}
/*
*/