zoukankan      html  css  js  c++  java
  • Exercise: PCA in 2D

     
    Step 0: Load data

    The starter code contains code to load 45 2D data points. When plotted using the scatter function, the results should look like the following:

    Raw images

    Step 1: Implement PCA

    In this step, you will implement PCA to obtain xrot, the matrix in which the data is "rotated" to the basis comprising 	extstyle u_1, ldots, u_n made up of the principal components

    Step 1a: Finding the PCA basis

    Find 	extstyle u_1 and 	extstyle u_2, and draw two lines in your figure to show the resulting basis on top of the given data points.

    Pca 2d basis.png

    Step 1b: Check xRot

    Compute xRot, and use the scatter function to check that xRot looks as it should, which should be something like the following:

    Pca xrot 2d.png

    Step 2: Dimension reduce and replot

    In the next step, set k, the number of components to retain, to be 1

    Pca xhat 2d.png

    Step 3: PCA Whitening

    Pca white 2d.png

    Step 4: ZCA Whitening

    Zca white 2d.png

    Code

    close all
    
    %%================================================================
    %% Step 0: Load data
    %  We have provided the code to load data from pcaData.txt into x.
    %  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to
    %  the kth data point.Here we provide the code to load natural image data into x.
    %  You do not need to change the code below.
    
    x = load('pcaData.txt','-ascii'); % 载入数据
    figure(1);
    scatter(x(1, :), x(2, :)); % 用圆圈绘制出数据分布
    title('Raw data');
    
    
    %%================================================================
    %% Step 1a: Implement PCA to obtain U 
    %  Implement PCA to obtain the rotation matrix U, which is the eigenbasis
    %  sigma. 
    
    % -------------------- YOUR CODE HERE -------------------- 
    u = zeros(size(x, 1)); % You need to compute this
    [n m]=size(x);
    % x=x-repmat(mean(x,2),1,m);  %预处理,均值为零 —— 2维,每一维减去该维上的均值
    sigma=(1.0/m)*x*x'; % 协方差矩阵
    [u s v]=svd(sigma);
    
    % -------------------------------------------------------- 
    hold on
    plot([0 u(1,1)], [0 u(2,1)]); % 画第一条线
    plot([0 u(1,2)], [0 u(2,2)]); % 画第二条线
    scatter(x(1, :), x(2, :));
    hold off
    
    %%================================================================
    %% Step 1b: Compute xRot, the projection on to the eigenbasis
    %  Now, compute xRot by projecting the data on to the basis defined
    %  by U. Visualize the points by performing a scatter plot.
    
    % -------------------- YOUR CODE HERE -------------------- 
    xRot = zeros(size(x)); % You need to compute this
    xRot=u'*x;
    
    % -------------------------------------------------------- 
    
    % Visualise the covariance matrix. You should see a line across the
    % diagonal against a blue background.
    figure(2);
    scatter(xRot(1, :), xRot(2, :));
    title('xRot');
    
    %%================================================================
    %% Step 2: Reduce the number of dimensions from 2 to 1. 
    %  Compute xRot again (this time projecting to 1 dimension).
    %  Then, compute xHat by projecting the xRot back onto the original axes 
    %  to see the effect of dimension reduction
    
    % -------------------- YOUR CODE HERE -------------------- 
    k = 1; % Use k = 1 and project the data onto the first eigenbasis
    xHat = zeros(size(x)); % You need to compute this
    xHat = u*([u(:,1),zeros(n,1)]'*x); % 降维
    % 使特征点落在特征向量所指的方向上而不是原坐标系上
    
    
    % -------------------------------------------------------- 
    figure(3);
    scatter(xHat(1, :), xHat(2, :));
    title('xHat');
    
    
    %%================================================================
    %% Step 3: PCA Whitening
    %  Complute xPCAWhite and plot the results.
    
    epsilon = 1e-5;
    % -------------------- YOUR CODE HERE -------------------- 
    xPCAWhite = zeros(size(x)); % You need to compute this
    xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u'*x;  % 每个特征除以对应的特征向量,以使每个特征有一致的方差
    % -------------------------------------------------------- 
    figure(4);
    scatter(xPCAWhite(1, :), xPCAWhite(2, :));
    title('xPCAWhite');
    
    %%================================================================
    %% Step 3: ZCA Whitening
    %  Complute xZCAWhite and plot the results.
    
    % -------------------- YOUR CODE HERE -------------------- 
    xZCAWhite = zeros(size(x)); % You need to compute this
    xZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u'*x;
    
    % -------------------------------------------------------- 
    figure(5);
    scatter(xZCAWhite(1, :), xZCAWhite(2, :));
    title('xZCAWhite');
    
    %% Congratulations! When you have reached this point, you are done!
    %  You can now move onto the next PCA exercise. :)
  • 相关阅读:
    软件工程课程总结
    团队-student_blog-最终程序
    课后作业-阅读任务-阅读提问-3
    课后作业-阅读任务-阅读笔记-3
    《团队-爬虫豆瓣top250项目-团队一阶段互评》
    爬虫豆瓣top250项目-开发文档
    《结对-英文词频统计-结对项目总结》
    JAVA实现最短距离算法之迪杰斯特拉算法
    切词框架jcseg,入门
    本人对于netty框架的一些理解,怎么与网站上的websock建立连接
  • 原文地址:https://www.cnblogs.com/sprint1989/p/3971567.html
Copyright © 2011-2022 走看看