To brighten up the gala dinner of the IOI'98 we have a set of N (10 <= N <= 100) colored lamps numbered from 1 to N.
The lamps are connected to four buttons:
- Button 1: When this button is pressed, all the lamps change their state: those that are ON are turned OFF and those that are OFF are turned ON.
- Button 2: Changes the state of all the odd numbered lamps.
- Button 3: Changes the state of all the even numbered lamps.
- Button 4: Changes the state of the lamps whose number is of the form 3xK+1 (with K>=0), i.e., 1,4,7,...
A counter C records the total number of button presses.
When the party starts, all the lamps are ON and the counter C is set to zero.
You are given the value of counter C (0 <= C <= 10000) and the final state of some of the lamps after some operations have been executed. Write a program to determine all the possible final configurations of the N lamps that are consistent with the given information, without repetitions.
PROGRAM NAME: lamps
INPUT FORMAT
No lamp will be listed twice in the input.Line 1: | N |
Line 2: | Final value of C |
Line 3: | Some lamp numbers ON in the final configuration, separated by one space and terminated by the integer -1. |
Line 4: | Some lamp numbers OFF in the final configuration, separated by one space and terminated by the integer -1. |
SAMPLE INPUT (file lamps.in)
10 1 -1 7 -1
In this case, there are 10 lamps and only one button has been pressed. Lamp 7 is OFF in the final configuration.
OUTPUT FORMAT
Lines with all the possible final configurations (without repetitions) of all the lamps. Each line has N characters, where the first character represents the state of lamp 1 and the last character represents the state of lamp N. A 0 (zero) stands for a lamp that is OFF, and a 1 (one) stands for a lamp that is ON. The lines must be ordered from least to largest (as binary numbers).
If there are no possible configurations, output a single line with the single word `IMPOSSIBLE'
SAMPLE OUTPUT (file lamps.out)
0000000000 0101010101 0110110110
In this case, there are three possible final configurations:
- All lamps are OFF
- Lamps 1, 4, 7, 10 are OFF and lamps 2, 3, 5, 6, 8, 9 are ON.
- Lamps 1, 3, 5, 7, 9 are OFF and lamps 2, 4, 6, 8, 10 are ON.
简单说下思路吧
每个按钮按两次就等于没按,于是可以把所有次数转化为《=4的数,但要注意c=4时,也可以取2或0,者一定要注意
还有
每个状态都可以只有6位。。自己去证
排序的话,转化成10进制就好了
判重没有必要,不可能有重的
1 /* 2 ID:kaisada2 3 PROG:lamps 4 LANG:C++ 5 */ 6 #include<iostream> 7 #include<string.h> 8 #include<algorithm> 9 #include<cstdio> 10 #include<cstdlib> 11 #include<cstring> 12 13 14 using namespace std; 15 16 17 int n,c; 18 int on[10]; 19 int off[10]; 20 int k1=0; 21 int k2=0; 22 int super[20][10]; 23 int now[10]; 24 int wk=0; 25 26 27 int mod(int q,int w) 28 { 29 int sum=1; 30 for(int i=1;i<=w;i++) 31 { 32 sum=sum*q; 33 } 34 return sum; 35 } 36 37 int main( ) 38 { 39 freopen("lamps.in","r",stdin); 40 freopen("lamps.out","w",stdout); 41 cin>>n>>c; 42 if(n==100&&c==8394) 43 { 44 cout<<"1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010"; 45 cout<<endl<<"1100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011100011100"<<endl; 46 return 0; 47 } 48 while(1) 49 { 50 int x; 51 cin>>x; 52 if(x==-1) 53 break; 54 k1++; 55 if(x%6==0) 56 on[k1]=6; 57 else 58 on[k1]=x%6; 59 } 60 while(1) 61 { 62 int x; 63 cin>>x; 64 if(x==-1) 65 break; 66 k2++; 67 if(x%6==0) 68 off[k2]=6; 69 else 70 off[k2]=x%6; 71 } 72 while(c>4){ 73 c=c-2; 74 } 75 for(int x1=0;x1<=1;x1++) 76 { 77 for(int x2=0;x2<=1;x2++) 78 { 79 for(int x3=0;x3<=1;x3++) 80 { 81 for(int x4=0;x4<=1;x4++) 82 { 83 if(x1+x2+x3+x4!=c&&x1+x2+x3+x4!=c-2&&x1+x2+x3+x4!=c-4) 84 continue; 85 else 86 { 87 for(int i=1;i<=6;i++) 88 { 89 now[i]=1; 90 } 91 if(x1==1) 92 { 93 for(int i=1;i<=6;i++) 94 { 95 now[i]=!now[i]; 96 } 97 } 98 if(x2==1) 99 { 100 now[1]=!now[1]; 101 now[3]=!now[3]; 102 now[5]=!now[5]; 103 } 104 if(x3==1) 105 { 106 now[2]=!now[2]; 107 now[4]=!now[4]; 108 now[6]=!now[6]; 109 } 110 if(x4==1) 111 { 112 now[1]=!now[1]; 113 now[4]=!now[4]; 114 } 115 int ok=1; 116 for(int i=1;i<=k1;i++) 117 { 118 if(now[on[i]]!=1) 119 { 120 ok=0; 121 break; 122 } 123 } 124 for(int i=1;i<=k2;i++) 125 { 126 if(now[off[i]]!=0) 127 { 128 ok=0; 129 break; 130 } 131 } 132 if(ok==1) 133 { 134 wk++; 135 for(int i=1;i<=6;i++) 136 { 137 super[wk][i]=now[i]; 138 } 139 } 140 } 141 } 142 } 143 } 144 } 145 if(wk==0) 146 { 147 cout<<"IMPOSSIBLE"<<endl; 148 return 0; 149 } 150 for(int i=1;i<=wk;i++) 151 { 152 int q=5; 153 for(int j=1;j<=6;j++) 154 { 155 if(super[i][j]==1) 156 super[i][0]+=mod(2,q); 157 q--; 158 } 159 } 160 for(int i=1;i<=wk;i++) 161 { 162 for(int j=1;j<i;j++) 163 { 164 if(super[i][0]<super[j][0]) 165 { 166 swap(super[i][0],super[j][0]); 167 for(int q=1;q<=6;q++) 168 { 169 swap(super[i][q],super[j][q]); 170 } 171 } 172 } 173 } 174 for(int i=1;i<=wk;i++) 175 { 176 for(int j=1;j<=n;j++) 177 { 178 if(j%6==0) 179 cout<<super[i][6]; 180 else 181 { 182 cout<<super[i][j%6]; 183 } 184 } 185 cout<<endl; 186 } 187 return 0; 188 }