Sequence
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
Given an integer number sequence A of length N (1<=N<=1000), we define f(i,j)=(A[i]+A[i+1]+...+A[j])^2 (i<=j).
Now you can split the sequence into exactly M (1<=M<= N) succesive parts, and the cost of a part from A[i] to A[j] is f(i,j). The totle cost is the sum of the cost of each part. Please split the sequence with the minimal cost.
输入
At the first of the input comes an integer t indicates the number of cases to follow. Every case starts with
a line containing N ans M. The following N lines are A[1], A[2]...A[N], respectively. 0<=A[i]<=100 for every 1<=i<=N.
输出
For each testcase, output one line containing an integer number denoting the minimal
cost of splitting the sequence into exactly M succesive parts.
示例输入
1 5 2 1 3 2 4 5
示例输出
117
提示
来源
山东省第二届ACM大学生程序设计竞赛
解题思路:
代码:
#include <iostream> #include <string.h> #include <algorithm> using namespace std; const int maxn=1010; int num[maxn]; long long sum[maxn]; long long dp[maxn]; int min(int a,int b) { return a>b?b:a; } int main() { int t;cin>>t; int n,m; while(t--) { memset(sum,0,sizeof(sum)); cin>>n>>m; for(int i=1;i<=n;i++) { cin>>num[i]; sum[i]=sum[i-1]+num[i]; dp[i]=sum[i]*sum[i];//求前i个数和的平方,这一句也是为什么dp数组不用初始化为最大值的原因 } for(int i=2;i<=m;i++)//划分为几部分 { for(int j=n-m+i;j>=i;j--)//从dp[n-m+i]出开始更新,从后往前,要构成更多的划分,因此dp[n-m+i]后面的dp[]不用更新,更新了也用不到 { for(int k=i-1;k<j;k++)//从哪里到哪里的划分,上一次的dp[]划分加上新的划分区间和,枚举,取最小值 { dp[j]=min(dp[j],dp[k]+(sum[j]-sum[k])*(sum[j]-sum[k])); if(i==m&&k==j-1)//计算到划分为m部分,且枚举完毕 goto label; } } } label: cout<<dp[n]<<endl; } return 0; }