zoukankan      html  css  js  c++  java
  • [ACM] poj 1141 Brackets Sequence (动态规划)

    Brackets Sequence
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 23884   Accepted: 6727   Special Judge

    Description

    Let us define a regular brackets sequence in the following way:

    1. Empty sequence is a regular sequence.
    2. If S is a regular sequence, then (S) and [S] are both regular sequences.
    3. If A and B are regular sequences, then AB is a regular sequence.

    For example, all of the following sequences of characters are regular brackets sequences:

    (), [], (()), ([]), ()[], ()[()]

    And all of the following character sequences are not:

    (, [, ), )(, ([)], ([(]

    Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

    Input

    The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

    Output

    Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

    Sample Input

    ([(]

    Sample Output

    ()[()]

    Source

    参考资料:

    http://www.cnblogs.com/android-html5/archive/2010/05/30/2534035.html

    http://blog.csdn.net/lijiecsu/article/details/7589877

    dp[i][j]更新的顺序

    假设字符串的长度为6

    (0,1) (1,2) (2,3) (3,4) (4,5)

    (0,2) (1,3) (2,4) (3,5)

    (0,3) (1,4) (2,5)

    (0,4) (1,5)

    (0,5)

    任何可能的区间都在里面,而且区间长度由小到大,这也符合动规把大问题转化为小问题的思想。

    代码:

    #include <iostream>
    #include <algorithm>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    using namespace std;
    const int maxn=250;
    const int inf=0x7fffffff;
    char str[maxn];
    int dp[maxn][maxn],ps[maxn][maxn];
    //dp[i][j]代表串从i到j需要添加几个字符才能合法,ps[i][j],记录的从i到j在哪里断成两部分
    int len;
    
    void print(int i,int j)//递归输出
    {
        if(i>j)
            return;
        if(i==j)
        {
            if(str[i]=='('||str[i]==')')
                cout<<"()";
            else
                cout<<"[]";
        }
        else if(ps[i][j]==-1)//从i到j括号匹配
        {
            cout<<str[i];
            print(i+1,j-1);
            cout<<str[j];
        }
        else//不匹配分成两部分输出
        {
            print(i,ps[i][j]);
            print(ps[i][j]+1,j);
        }
    }
    
    int main()
    {
        cin>>str;
        len=strlen(str);
        memset(dp,0,sizeof(dp));
        for(int i=0;i<len;i++)
            dp[i][i]=1;
        for(int k=1;k<len;k++)//区间从小到大
            for(int i=0;i+k<len;i++)
        {
            int j=i+k;
            dp[i][j]=inf;
            if((str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']'))
            {
                dp[i][j]=dp[i+1][j-1];
                ps[i][j]=-1;//括号匹配,不用添加另外的括号
            }
            for(int mid=i;mid<j;mid++)//看是否能划分为两部分
            {
                if(dp[i][j]>(dp[i][mid]+dp[mid+1][j]))
                {
                    dp[i][j]=dp[i][mid]+dp[mid+1][j];
                    ps[i][j]=mid;//mid为串i到j区间断开的位置
                }
            }
        }
        print(0,len-1);
        cout<<endl;
        return 0;
    }
    


     

  • 相关阅读:
    H 指数 II(leetcode)
    找两个和为目标值且不重叠的子数组(leetcode)
    冗余链接
    那就别担心了 (30分) PTA
    排座位(newcoder)
    倒水(newcoder)
    文献随笔目录03
    基于ASP.NET的高校教学质量监控系统研究随笔
    基于ASP.NET技术的马铃薯专家系统的构建随笔
    高校贫困生评定管理系统设计随笔
  • 原文地址:https://www.cnblogs.com/sr1993/p/3697755.html
Copyright © 2011-2022 走看看