zoukankan      html  css  js  c++  java
  • [ACM] hdu You can Solve a Geometry Problem too (线段是否相交及交点个数)

    Problem Description

    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.

    Sample Input

    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
    

    Sample Output

    1
    3
    

    Author

    lcy

    模板:

    struct point//构造点
    {
        double x,y;
    };
    struct line//构造线段
    {
        point a,b;
    };
    
    double multi(point p1,point p2,point p0)//矩形面积
    {
        return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
    }
    
    bool intersect(line u,line v)//判断两线段是否相交
    {
     return( (max(u.a.x,u.b.x)>=min(v.a.x,v.b.x))&&
            (max(v.a.x,v.b.x)>=min(u.a.x,u.b.x))&&
            (max(u.a.y,u.b.y)>=min(v.a.y,v.b.y))&&
            (max(v.a.y,v.b.y)>=min(u.a.y,u.b.y))&&
            (multi(v.a,u.b,u.a)*multi(u.b,v.b,u.a)>=0)&&
            (multi(u.a,v.b,v.a)*multi(v.b,u.b,v.a)>=0));
    }
    


    本题代码:

    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    struct point//构造点
    {
        double x,y;
    };
    struct line//构造线段
    {
        point a,b;
    };
    
    double multi(point p1,point p2,point p0)//矩形面积
    {
        return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
    }
    
    bool intersect(line u,line v)//判断两线段是否相交
    {
     return( (max(u.a.x,u.b.x)>=min(v.a.x,v.b.x))&&
            (max(v.a.x,v.b.x)>=min(u.a.x,u.b.x))&&
            (max(u.a.y,u.b.y)>=min(v.a.y,v.b.y))&&
            (max(v.a.y,v.b.y)>=min(u.a.y,u.b.y))&&
            (multi(v.a,u.b,u.a)*multi(u.b,v.b,u.a)>=0)&&
            (multi(u.a,v.b,v.a)*multi(v.b,u.b,v.a)>=0));
    }
    line lin[102];
    
    int main()
    {
        int n;
        while(cin>>n&&n)
        {
            for(int i=1;i<=n;i++)
                cin>>lin[i].a.x>>lin[i].a.y>>lin[i].b.x>>lin[i].b.y;
            int count=0;//交点个数
            for(int i=1;i<=n;i++)
                for(int j=i+1;j<=n;j++)
            {
                if(intersect(lin[i],lin[j]))
                    count++;
            }
            cout<<count<<endl;
        }
        return 0;
    }
    

  • 相关阅读:
    单节点Redis使用 Python pipline大批量插入数据
    Redis进阶实践之十六 Redis大批量增加数据
    Redis进阶实践之十四 Redis-cli命令行工具使用详解
    Redis进阶实践之十三 Redis的Redis-trib.rb脚本文件使用详解
    (error) MOVED 5798 172.17.0.3:6379
    Redis进阶实践之十二 Redis的Cluster集群动态扩容
    [ERR] Node is not empty. Either the node already knows other nodes (check with C
    【Redis】编译错误zmalloc.h:50:31: fatal error: jemalloc/jemalloc.h: No such file or directory
    Redis进阶实践之十一 Redis的Cluster集群搭建
    linux 安装软件各种错误集锦及解决方法
  • 原文地址:https://www.cnblogs.com/sr1993/p/3697788.html
Copyright © 2011-2022 走看看