zoukankan      html  css  js  c++  java
  • [ACM] hdu You can Solve a Geometry Problem too (线段是否相交及交点个数)

    Problem Description

    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.

    Sample Input

    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
    

    Sample Output

    1
    3
    

    Author

    lcy

    模板:

    struct point//构造点
    {
        double x,y;
    };
    struct line//构造线段
    {
        point a,b;
    };
    
    double multi(point p1,point p2,point p0)//矩形面积
    {
        return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
    }
    
    bool intersect(line u,line v)//判断两线段是否相交
    {
     return( (max(u.a.x,u.b.x)>=min(v.a.x,v.b.x))&&
            (max(v.a.x,v.b.x)>=min(u.a.x,u.b.x))&&
            (max(u.a.y,u.b.y)>=min(v.a.y,v.b.y))&&
            (max(v.a.y,v.b.y)>=min(u.a.y,u.b.y))&&
            (multi(v.a,u.b,u.a)*multi(u.b,v.b,u.a)>=0)&&
            (multi(u.a,v.b,v.a)*multi(v.b,u.b,v.a)>=0));
    }
    


    本题代码:

    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    struct point//构造点
    {
        double x,y;
    };
    struct line//构造线段
    {
        point a,b;
    };
    
    double multi(point p1,point p2,point p0)//矩形面积
    {
        return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
    }
    
    bool intersect(line u,line v)//判断两线段是否相交
    {
     return( (max(u.a.x,u.b.x)>=min(v.a.x,v.b.x))&&
            (max(v.a.x,v.b.x)>=min(u.a.x,u.b.x))&&
            (max(u.a.y,u.b.y)>=min(v.a.y,v.b.y))&&
            (max(v.a.y,v.b.y)>=min(u.a.y,u.b.y))&&
            (multi(v.a,u.b,u.a)*multi(u.b,v.b,u.a)>=0)&&
            (multi(u.a,v.b,v.a)*multi(v.b,u.b,v.a)>=0));
    }
    line lin[102];
    
    int main()
    {
        int n;
        while(cin>>n&&n)
        {
            for(int i=1;i<=n;i++)
                cin>>lin[i].a.x>>lin[i].a.y>>lin[i].b.x>>lin[i].b.y;
            int count=0;//交点个数
            for(int i=1;i<=n;i++)
                for(int j=i+1;j<=n;j++)
            {
                if(intersect(lin[i],lin[j]))
                    count++;
            }
            cout<<count<<endl;
        }
        return 0;
    }
    

  • 相关阅读:
    POJ 题目2750 Potted Flower(线段树求环型区间中连续区间的最大和)
    即使没人看我们也要坚持写Blog
    鸟哥的Linux私房菜-----7、硬件管理
    android createbitmap函数内存溢出,求解怎样进行处理out of memory溢出问题
    hdu4614Vases and Flowers 线段树
    安装npm及cnpm(Windows)
    安装npm及cnpm(Windows)
    安装npm及cnpm(Windows)
    Echarts设置点击事件
    Vs Code中炫酷写代码插件Power Mode的安装配置
  • 原文地址:https://www.cnblogs.com/sr1993/p/3697788.html
Copyright © 2011-2022 走看看