zoukankan      html  css  js  c++  java
  • 利用docker-py操作docker

    docker-py是Docker SDK for Python。docker-py主要利用了requests,使用http/socket协议连接本地的docker engine进行操作。对 docker 感兴趣,苦于工作中只用到 http 协议的同学,都建议阅读一下本文。话不多数,一起了解docker-py的实现,本文分下面几个部分:

    • docker-py项目结构
    • docker-py API示例
    • DockerClient的实现
    • docker-version命令跟踪
    • UnixHTTPAdapter的实现
    • docker-ps命令跟踪
    • docker-logs命令跟踪
    • docker-exec 命令跟踪
    • 使用curl访问docker-api
    • 小结
    • 小技巧

    1、docker-py项目结构

    本次代码阅读,使用的版本是 4.2.0, 项目目录结构大概如下:

    文件 描述
    client.py docker客户端的API
    api api相关目录
    api/client.py api的主要实现
    api/container.py container相关的api和client-mixin
    api/daemon.py daemon相关的api和client-mixin
    models 下为各种对象模型,主要是单体及集合
    models/resource.py 模型基类
    models/containers.py Container和ContainerCollection模型
    transport 为客户端和服务端的交互协议
    transport/unixconn.py mac下主要使用了unix-sock实现

    还有一些目录和类,因为不在这次介绍中,所以就没有罗列。

    2、docker-py API示例

    docker-py API上手非常简单:

    import docker
    client = docker.from_env()
    
    result = client.version()
    print(result)
    # {'Platform': {'Name': 'Docker Engine - Community'},...}
    
    client.containers.list()
    # [<Container '45e6d2de7c54'>, <Container 'db18e4f20eaa'>, ...]
    
    client.images.pull('nginx:1.10-alpine')
    # <Image: 'nginx:1.10-alpine'>
    
    client.images.list()
    [<Image 'ubuntu'>, <Image 'nginx:1.10-alpine'>, ...]
    

    上面示例展示了:

    • 使用环境变量,创建client连接本地docker-engine服务
    • 获取版本号,等同 docker version
    • 获取正在运行的容器列表,等同 docker container list(别名是 docker ps)
    • 拉取 nginx:1.10-alpin 镜像,等同 docker image pull nginx:1.10-alpine(别名是docker pull nginx:1.10-alpine)
    • 获取镜像列表, 等同 docker image list

    我们可以看到,docker-py的操作和docker的标准命令基本一致。

    3、DockerClient的实现

    DockerClient的构造函数和工厂方法展示docker-client对象包装了APIClient对象:

    # client.py
    
    class DockerClient(object):
        def __init__(self, *args, **kwargs):
            self.api = APIClient(*args, **kwargs)
        
        @classmethod
        def from_env(cls, **kwargs):
            timeout = kwargs.pop('timeout', DEFAULT_TIMEOUT_SECONDS)
            max_pool_size = kwargs.pop('max_pool_size', DEFAULT_MAX_POOL_SIZE)
            version = kwargs.pop('version', None)
            use_ssh_client = kwargs.pop('use_ssh_client', False)
            return cls(
                timeout=timeout,
                max_pool_size=max_pool_size,
                version=version,
                use_ssh_client=use_ssh_client,
                **kwargs_from_env(**kwargs)
            )
    

    DockerClient的API分2中,一种是属性方法,比如常用的 containersimagesnetworksvolumes 等子命令,因为要将返回值包装成对应模型对象:

    @property
    def containers(self):
        """
        An object for managing containers on the server. See the
        :doc:`containers documentation <containers>` for full details.
        """
        return ContainerCollection(client=self)
    
    @property
    def images(self):
        return ImageCollection(client=self)
    
    @property
    def networks(self):
        return NetworkCollection(client=self)
    
    @property
    def volumes(self):
        return VolumeCollection(client=self)
        
        ...
    

    另一种是不需要模型包装,可以直接使用APIClient返回结果的 info, version 等方法:

    # Top-level methods
    def info(self, *args, **kwargs):
            return self.api.info(*args, **kwargs)
        info.__doc__ = APIClient.info.__doc__
    
    def version(self, *args, **kwargs):
            return self.api.version(*args, **kwargs)
        version.__doc__ = APIClient.version.__doc__
        
        ...
    

    DockerClient类工厂方法的全局引用:

    from_env = DockerClient.from_env
    

    4、docker-version命令跟踪

    我们先从简单的 docker version 命令跟踪查看APIClient如何工作的。APIClient的构造函数:

    # api/client.py
    
    import requests
    
    class APIClient(
            requests.Session,
            BuildApiMixin,
            ConfigApiMixin,
            ContainerApiMixin,
            DaemonApiMixin,
            ExecApiMixin,
            ImageApiMixin,
            NetworkApiMixin,
            PluginApiMixin,
            SecretApiMixin,
            ServiceApiMixin,
            SwarmApiMixin,
            VolumeApiMixin):
            
        def __init__(self, base_url=None, version=None,
                 timeout=DEFAULT_TIMEOUT_SECONDS, tls=False,
                 user_agent=DEFAULT_USER_AGENT, num_pools=None,
                 credstore_env=None, use_ssh_client=False,
                 max_pool_size=DEFAULT_MAX_POOL_SIZE):
            super(APIClient, self).__init__()
            
            base_url = utils.parse_host(
                base_url, IS_WINDOWS_PLATFORM, tls=bool(tls)
            )
            
            if base_url.startswith('http+unix://'):
                self._custom_adapter = UnixHTTPAdapter(
                    base_url, timeout, pool_connections=num_pools,
                    max_pool_size=max_pool_size
                )
                self.mount('http+docker://', self._custom_adapter)
                self._unmount('http://', 'https://')
                # host part of URL should be unused, but is resolved by requests
                # module in proxy_bypass_macosx_sysconf()
                self.base_url = 'http+docker://localhost'
    

    上面代码可见:

    • APIClient继承自 requests.Session
    • APIClient使用Mixin方式组合了多个API,比如ContainerApiMixin提供container的api操作;NetWorkApiMixin提供network的api操作
    • 使用mount方法加载不同协议的适配器adapter,unix系的docker是unix-socket;windows则是npipe

    关于requests的使用,可以参看之前的博文 requests 源码阅读

    默认的服务URL实现:

    DEFAULT_UNIX_SOCKET = "http+unix:///var/run/docker.sock"
    DEFAULT_NPIPE = 'npipe:////./pipe/docker_engine'
    
    def parse_host(addr, is_win32=False, tls=False):
        path = ''
        port = None
        host = None
    
        # Sensible defaults
        if not addr and is_win32:
            return DEFAULT_NPIPE
        if not addr or addr.strip() == 'unix://':
            return DEFAULT_UNIX_SOCKET
    

    version 请求在 DaemonApiMixin 中实现:

    class DaemonApiMixin(object):
    
    
        def version(self, api_version=True):
            url = self._url("/version", versioned_api=api_version)
            return self._result(self._get(url), json=True)
    

    底层的请求和响应在主类APIClient中提供:

    class APIClient
        
        def _url(self, pathfmt, *args, **kwargs):
            ...
            return '{0}{1}'.format(self.base_url, pathfmt.format(*args))
    
        @update_headers
        def _get(self, url, **kwargs):
            return self.get(url, **self._set_request_timeout(kwargs))
                
        def _result(self, response, json=False, binary=False):
            assert not (json and binary)
            self._raise_for_status(response)
        
            if json:
                return response.json()
            if binary:
                return response.content
            return response.text
    

    get和result,response都是requests提供。get发送请求,response.json将请求格式化成json后返回。

    5、UnixHTTPAdapter的实现

    /var/run/docker.sock是Docker守护程序侦听的UNIX套接字,其连接使用UnixHTTPAdapter处理:

    # transport/unixconn.py
    
    import requests.adapters
    
    RecentlyUsedContainer = urllib3._collections.RecentlyUsedContainer
    
    class UnixHTTPAdapter(BaseHTTPAdapter):
        def __init__(self, socket_url, timeout=60,
                     pool_connections=constants.DEFAULT_NUM_POOLS,
                     max_pool_size=constants.DEFAULT_MAX_POOL_SIZE):
            socket_path = socket_url.replace('http+unix://', '')
            if not socket_path.startswith('/'):
                socket_path = '/' + socket_path
            self.socket_path = socket_path
            self.timeout = timeout
            self.max_pool_size = max_pool_size
            self.pools = RecentlyUsedContainer(
                pool_connections, dispose_func=lambda p: p.close()
            )
            super(UnixHTTPAdapter, self).__init__()
        
        def get_connection(self, url, proxies=None):
            with self.pools.lock:
                pool = self.pools.get(url)
                if pool:
                    return pool
    
                pool = UnixHTTPConnectionPool(
                    url, self.socket_path, self.timeout,
                    maxsize=self.max_pool_size
                )
                self.pools[url] = pool
    
            return pool
    

    UnixHTTPAdapter主要使用urllib3提供的链接池管理UnixHTTPConnection连接:

    class UnixHTTPConnection(httplib.HTTPConnection, object):
    
        def __init__(self, base_url, unix_socket, timeout=60):
            super(UnixHTTPConnection, self).__init__(
                'localhost', timeout=timeout
            )
            self.base_url = base_url
            self.unix_socket = unix_socket
            self.timeout = timeout
            self.disable_buffering = False
    
        def connect(self):
            sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
            sock.settimeout(self.timeout)
            sock.connect(self.unix_socket)
            self.sock = sock
    
        def putheader(self, header, *values):
            super(UnixHTTPConnection, self).putheader(header, *values)
            if header == 'Connection' and 'Upgrade' in values:
                self.disable_buffering = True
    
        def response_class(self, sock, *args, **kwargs):
            if self.disable_buffering:
                kwargs['disable_buffering'] = True
    
            return UnixHTTPResponse(sock, *args, **kwargs)
    
    
    class UnixHTTPConnectionPool(urllib3.connectionpool.HTTPConnectionPool):
        def __init__(self, base_url, socket_path, timeout=60, maxsize=10):
            super(UnixHTTPConnectionPool, self).__init__(
                'localhost', timeout=timeout, maxsize=maxsize
            )
            self.base_url = base_url
            self.socket_path = socket_path
            self.timeout = timeout
    
        def _new_conn(self):
            return UnixHTTPConnection(
                self.base_url, self.socket_path, self.timeout
            )
    

    connect展示了socket类型是 socket.AF_UNIX, 这一部分的实现都非常基础 。

    关于socket,可以参看之前的博文 python http 源码阅读

    6、docker-ps命令跟踪

    接着我们跟踪稍微复杂点的命令 client.containers.list(), 也就是 docker ps。前面介绍了,container 会组装结果为数据模型,下面是模型的父类:

    class Model(object):
        """
        A base class for representing a single object on the server.
        """
        id_attribute = 'Id'
    
        def __init__(self, attrs=None, client=None, collection=None):
            self.client = client
            # 集合
            self.collection = collection
    
            self.attrs = attrs
    

    Model是单个模型抽象,Collection则是模型集合的抽象,使用集合的prepare_model构建各种对象:

    class Collection(object):
        """
        A base class for representing all objects of a particular type on the
        server.
        """
    
        model = None
    
        def __init__(self, client=None):
            self.client = client
        
        ...
        
        def prepare_model(self, attrs):
            """
            Create a model from a set of attributes.
            """
            if isinstance(attrs, Model):
                attrs.client = self.client
                # 双向引用
                attrs.collection = self
                return attrs
            elif isinstance(attrs, dict):
                return self.model(attrs=attrs, client=self.client, collection=self)
            else:
                raise Exception("Can't create %s from %s" %
                                (self.model.__name__, attrs))
    

    Container和ContainerCollection的实现

    class Container(Model):
        pass
        
    class ContainerCollection(Collection):
        model = Container
        
        def get(self, container_id):
            resp = self.client.api.inspect_container(container_id)
            return self.prepare_model(resp)
            
        def list(self, all=False, before=None, filters=None, limit=-1, since=None,
                 sparse=False, ignore_removed=False):
            resp = self.client.api.containers(all=all, before=before,
                                              filters=filters, limit=limit,
                                              since=since)
            containers = []
            for r in resp:
                containers.append(self.get(r['Id']))
            return containers
    

    其中list函数主要有下面几个步骤

    • 使用api的containers接口得到resp,就是container-id列表
    • 逐个循环使用api的inspect_container请求container的详细信息
    • 将结果封装成Container对象
    • 返回容器Container对象列表

    api.containers和api.inspect_container在ContainerApiMixin中提供, 非常简单清晰:

    class ContainerApiMixin(object):
    
        def containers(self, quiet=False, all=False, trunc=False, latest=False,
                       since=None, before=None, limit=-1, size=False,
                       filters=None):
            params = {
                'limit': 1 if latest else limit,
                'all': 1 if all else 0,
                'size': 1 if size else 0,
                'trunc_cmd': 1 if trunc else 0,
                'since': since,
                'before': before
            }
            if filters:
                params['filters'] = utils.convert_filters(filters)
            u = self._url("/containers/json")
            res = self._result(self._get(u, params=params), True)
    
            if quiet:
                return [{'Id': x['Id']} for x in res]
            if trunc:
                for x in res:
                    x['Id'] = x['Id'][:12]
            return res
        
        @utils.check_resource('container')
        def inspect_container(self, container):
            return self._result(
                self._get(self._url("/containers/{0}/json", container)), True
            )
    

    7、docker-logs命令跟踪

    前面的命令都是request-response的模式,我们再看看不一样的,基于流的docker-logs命令。我们先启动一个容器:

    docker run -d bfirsh/reticulate-splines
    

    查看容器列表

    # docker ps
    CONTAINER ID   IMAGE                       COMMAND                  CREATED          STATUS          PORTS             NAMES
    61709b0ed4b8   bfirsh/reticulate-splines   "/usr/local/bin/run.…"   22 seconds ago   Up 21 seconds                     festive_pare
    

    实时跟踪容器运行日志:

    # docker logs -f 6170
    Reticulating spline 1...
    Reticulating spline 2...
    ....
    

    可以看到reticulate-splines容器就是不停的打印行数数据。可以用下面的代码实现 docker logs 相同的功能:

    logs = client.containers.get('61709b0ed4b8').logs(stream=True)
     try:
      while True:
       line = next(logs).decode("utf-8")
       print(line)
     except StopIteration:
      print(f'log stream ended for {container_name}')   
    

    代码执行结果和前面的类似:

    # python sample.py
    ...
    Reticulating spline 14...
    
    Reticulating spline 15...
    ...
    

    logs的实现中返回一个CancellableStream,而不是一个result,利用这个stream,就可以持续的读取输出:

    # models/Container
    
    def logs(self, **kwargs):
        return self.client.api.logs(self.id, **kwargs)
        
    # api/continer
    def logs(self, container, stdout=True, stderr=True, stream=False,
                 timestamps=False, tail='all', since=None, follow=None,
                 until=None):
        ...
        
        url = self._url("/containers/{0}/logs", container)
            res = self._get(url, params=params, stream=stream)
            output = self._get_result(container, stream, res)
    
            if stream:
                return CancellableStream(output, res)
            else:
                return output
    

    比较特别的是下面对于stream的处理:

    # api/client
    
    def _multiplexed_response_stream_helper(self, response):
        """A generator of multiplexed data blocks coming from a response
        stream."""
    
        # Disable timeout on the underlying socket to prevent
        # Read timed out(s) for long running processes
        socket = self._get_raw_response_socket(response)
        self._disable_socket_timeout(socket)
    
        while True:
            header = response.raw.read(STREAM_HEADER_SIZE_BYTES)
            if not header:
                break
            _, length = struct.unpack('>BxxxL', header)
            if not length:
                continue
            data = response.raw.read(length)
            if not data:
                break
            yield data
    
    def _disable_socket_timeout(self, socket):
        sockets = [socket, getattr(socket, '_sock', None)]
    
        for s in sockets:
            if not hasattr(s, 'settimeout'):
                continue
    
            timeout = -1
    
            if hasattr(s, 'gettimeout'):
                timeout = s.gettimeout()
    
            # Don't change the timeout if it is already disabled.
            if timeout is None or timeout == 0.0:
                continue
    
            s.settimeout(None)
    

    上面代码展示了:

    • 流的读取方式是每次读取STREAM_HEADER_SIZE_BYTES长度的数据作为协议头
    • 协议头结构体格式解压后得到后面的数据包长度
    • 继续读取指定长度的数据包
    • 重复执行上面的数据读取过程
    • 流式读取的时候还需要关闭socket的超时机制,确保流一直保持,知道手动(ctl+c)关闭

    attach 则是采用了websocket的实现, 因为我们一般推荐使用exec命令,所以这里简单了解即可:

    def _attach_websocket(self, container, params=None):
        url = self._url("/containers/{0}/attach/ws", container)
        req = requests.Request("POST", url, params=self._attach_params(params))
        full_url = req.prepare().url
        full_url = full_url.replace("http://", "ws://", 1)
        full_url = full_url.replace("https://", "wss://", 1)
        return self._create_websocket_connection(full_url)
    
    def _create_websocket_connection(self, url):
        return websocket.create_connection(url)
    

    8、docker-exec 命令跟踪

    docker-exec是我们的重头戏,因为除了可以直接获取docker是输出外,还可以和docker进行交互。先简单回顾一下exec的使用:

    # docker exec -it 2075 ping www.weibo.cn
    PING www.weibo.cn (123.125.22.241): 56 data bytes
    64 bytes from 123.125.22.241: seq=0 ttl=37 time=6.797 ms
    64 bytes from 123.125.22.241: seq=1 ttl=37 time=39.279 ms
    64 bytes from 123.125.22.241: seq=2 ttl=37 time=29.635 ms
    64 bytes from 123.125.22.241: seq=3 ttl=37 time=27.737 ms
    

    上面示例可以用下面代码完全模拟:

    result = client.containers.get("2075").exec_run("ping www.weibo.cn", tty=True, stream=True)
    try:
     while True:
      line = next(result[1]).decode("utf-8")
      print(line)
    except StopIteration:
     print(f'exec stream ended for {container_name}')
    

    使用tty伪装终端和容器进行交互,就是我们最常用的方式了:

    # docker exec -it 2075 sh
    / # ls -la
    total 64
    drwxr-xr-x    1 root     root          4096 Mar 24 13:16 .
    drwxr-xr-x    1 root     root          4096 Mar 24 13:16 ..
    -rwxr-xr-x    1 root     root             0 Mar 24 13:16 .dockerenv
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 bin
    drwxr-xr-x    5 root     root           340 Mar 24 13:16 dev
    drwxr-xr-x    1 root     root          4096 Mar 24 13:16 etc
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 home
    drwxr-xr-x    1 root     root          4096 Mar  3  2017 lib
    lrwxrwxrwx    1 root     root            12 Mar  3  2017 linuxrc -> /bin/busybox
    drwxr-xr-x    5 root     root          4096 Mar  3  2017 media
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 mnt
    dr-xr-xr-x  156 root     root             0 Mar 24 13:16 proc
    drwx------    1 root     root          4096 Mar 25 08:17 root
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 run
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 sbin
    drwxr-xr-x    2 root     root          4096 Mar  3  2017 srv
    dr-xr-xr-x   13 root     root             0 Mar 24 13:16 sys
    drwxrwxrwt    1 root     root          4096 Mar  3  2017 tmp
    drwxr-xr-x    1 root     root          4096 Mar  3  2017 usr
    drwxr-xr-x    1 root     root          4096 Mar  3  2017 var
    / # exit
    

    同样这个过程也可以使用docker-py实现:

    _, socket = client.containers.get("2075").exec_run("sh", stdin=True, socket=True)
    print(socket)
    socket._sock.sendall(b"ls -la
    ")
    try:
     unknown_byte=socket._sock.recv(docker.constants.STREAM_HEADER_SIZE_BYTES)
     print(unknown_byte)
    
     buffer_size = 4096 # 4 KiB
     data = b''
     while True:
      part = socket._sock.recv(buffer_size)
      data += part
      if len(part) < buffer_size:
       # either 0 or end of data
       break
     print(data.decode("utf8"))
    
    except Exception: 
     pass
    socket._sock.send(b"exit
    ")
    

    示例演示的过程是:

    • 获取一个已经存在的容器2075
    • 对容器执行exec命令,注意需要开启stdin和socket
    • 向容器发送 ls -lah 展示目录列表
    • 读区socket上的结果。(这里我们偷懒,没有解析头,直接硬取,这样不够健壮)
    • 继续发送 exit 退出容器

    程序的输出和上面使用命令方式完全一致,就不在张贴了。进入核心的exec_run函数的实现:

    # model/containers
    
    def exec_run(self, cmd, stdout=True, stderr=True, stdin=False, tty=False,
                     privileged=False, user='', detach=False, stream=False,
                     socket=False, environment=None, workdir=None, demux=False):
        resp = self.client.api.exec_create(
                self.id, cmd, stdout=stdout, stderr=stderr, stdin=stdin, tty=tty,
                privileged=privileged, user=user, environment=environment,
                workdir=workdir,
            )
        exec_output = self.client.api.exec_start(
            resp['Id'], detach=detach, tty=tty, stream=stream, socket=socket,
            demux=demux
        )
        if socket or stream:
            return ExecResult(None, exec_output)
    

    主要使用API的exec_create和exec_start两个函数, 先看第一个exec_create函数:

    # api/exec_api
    
    def exec_create(self, container, cmd, stdout=True, stderr=True,
                        stdin=False, tty=False, privileged=False, user='',
                        environment=None, workdir=None, detach_keys=None):
    
        if isinstance(cmd, six.string_types):
            cmd = utils.split_command(cmd)
    
        if isinstance(environment, dict):
            environment = utils.utils.format_environment(environment)
    
        data = {
            'Container': container,
            'User': user,
            'Privileged': privileged,
            'Tty': tty,
            'AttachStdin': stdin,
            'AttachStdout': stdout,
            'AttachStderr': stderr,
            'Cmd': cmd,
            'Env': environment,
        }
    
        if detach_keys:
            data['detachKeys'] = detach_keys
        elif 'detachKeys' in self._general_configs:
            data['detachKeys'] = self._general_configs['detachKeys']
    
        url = self._url('/containers/{0}/exec', container)
        res = self._post_json(url, data=data)
        return self._result(res, True)
    

    exec_create相对还是比较简单,就是post-json数据到 /containers/{0}/exec 接口。然后是exec_start函数:

    def exec_start(self, exec_id, detach=False, tty=False, stream=False,
                   socket=False, demux=False):
    
        # we want opened socket if socket == True
    
        data = {
            'Tty': tty,
            'Detach': detach
        }
    
        headers = {} if detach else {
            'Connection': 'Upgrade',
            'Upgrade': 'tcp'
        }
    
        res = self._post_json(
            self._url('/exec/{0}/start', exec_id),
            headers=headers,
            data=data,
            stream=True
        )
        if detach:
            return self._result(res)
        if socket:
            return self._get_raw_response_socket(res)
        return self._read_from_socket(res, stream, tty=tty, demux=demux)
    

    exec_start是post-json到 /exec/{0}/start 接口,注意这个接口看起来不是到容器,而是到exec。然后如果socket参数是true则返回socket,可以进行写入;否则仅仅读取数据。

    9、使用curl访问docker-api

    docker-engine的REST-api也可以直接使用 curl 访问:

    $ curl --unix-socket /var/run/docker.sock -H "Content-Type: application/json" 
      -d '{"Image": "alpine", "Cmd": ["echo", "hello world"]}' 
      -X POST http://localhost/v1.41/containers/create
    {"Id":"1c6594faf5","Warnings":null}
    
    $ curl --unix-socket /var/run/docker.sock -X POST http://localhost/v1.41/containers/1c6594faf5/start
    
    $ curl --unix-socket /var/run/docker.sock -X POST http://localhost/v1.41/containers/1c6594faf5/wait
    {"StatusCode":0}
    
    $ curl --unix-socket /var/run/docker.sock "http://localhost/v1.41/containers/1c6594faf5/logs?stdout=1"
    hello world
    

    可以通过修改/etc/docker/daemon.json更改为http服务方式的api

    {
      "debug": true,
      "hosts": ["tcp://192.168.59.3:2376"]
    }
    

    然后 curl 命令可以直接访问docker的api

    curl http://127.0.0.1:2375/info
    curl http://127.0.0.1:2375/version
    curl http://127.0.0.1:2375/images/json
    curl http://127.0.0.1:2375/images/alpine/json
    curl http://127.0.0.1:2375/containers/json
    curl http://127.0.0.1:2375/containers/25c5805a06b6/json
    

    10、小结

    利用docker-py可以完全操作docker,这得益docker提供的REST-api操作。同时也发现requests的设计很强大,不仅仅可以用来做http请求,还可以用来做socket请求。学习docker-py后,相信大家对docker的理解一定有那么一点点加深,也希望下面这张图可以帮助你记忆:

    11、小技巧

    使用 check_resource 装饰器,对函数的参数进行预先处理:

    def check_resource(resource_name):
        def decorator(f):
            @functools.wraps(f)
            def wrapped(self, resource_id=None, *args, **kwargs):
                if resource_id is None and kwargs.get(resource_name):
                    resource_id = kwargs.pop(resource_name)
                if isinstance(resource_id, dict):
                    resource_id = resource_id.get('Id', resource_id.get('ID'))
                if not resource_id:
                    raise errors.NullResource(
                        'Resource ID was not provided'
                    )
                return f(self, resource_id, *args, **kwargs)
            return wrapped
        return decorator
    

    代码版本比较工具:

    from distutils.version import StrictVersion
    
    
    def compare_version(v1, v2):
        """Compare docker versions
    
        >>> v1 = '1.9'
        >>> v2 = '1.10'
        >>> compare_version(v1, v2)
        1
        >>> compare_version(v2, v1)
        -1
        >>> compare_version(v2, v2)
        0
        """
        s1 = StrictVersion(v1)
        s2 = StrictVersion(v2)
        if s1 == s2:
            return 0
        elif s1 > s2:
            return -1
        else:
            return 1
    
    
    def version_lt(v1, v2):
        return compare_version(v1, v2) > 0
    
    
    def version_gte(v1, v2):
        return not version_lt(v1, v2)
    

    参考链接

    转载自:https://mp.weixin.qq.com/s/kF03uUxWiDkeClZY9o5E8Q

  • 相关阅读:
    Element filtername is not allowed here-web.xml version="3.0"-intellij idea
    探究JavaScript闭包
    telnet的安装和使用
    Oracle数据库常用的sql语句
    centos6上安装jenkins
    idea的maven项目不知道为啥下载不下来jar包,看本地仓库只是下载了一下xml文件,没有jar包问题
    Oracle数据库使用mybatis的时候,实体类日期为Date类型,mybatis里面定义的是Date类型,插入的时候,时分秒全部是12:00:00问题
    maven打包某个分支的包
    maven打包到私服,打的是war包,好郁闷
    多线程初学习
  • 原文地址:https://www.cnblogs.com/ssgeek/p/14758117.html
Copyright © 2011-2022 走看看