前言
收集大量的日志信息之后,把这些日志存放在哪里?才能对其日志内容进行搜素呢?MySQL?
如果MySQL里存储了1000W条这样的数据,每条记录的details字段有128个字。
用户想要查询details字段包含“ajax”这个关键词的记录。
MySQL执行
select * from logtable where details like "%ajax%";
每次执行这条SQL语句,都需要逐一查询logtable中每条记录,最头痛的是找到这条记录之后,每次还要对这条记录中details字段里的文本内容进行全文扫描。
判断这个当前记录中的details字段是的内容否包含 “ajax”?有可能会查询 10000w*128次.
如果用户想搜素 “ajax”拼错了拼成了“ajxa”,这个sql无法搜素到用户想要的信息。因为不支持尝试把用户输入的错别字"ajxa"拆分开使用‘a‘,‘j‘,‘x‘,'a' 去尽可能多的匹配我想要的信息。
所以想要支持搜素details字段的Text内容的情况下,把海量的日志信息存在MySQL中是不太合理的。
Elasticsearch简介
1.倒排索引
倒排索引是一种索引数据结构:从文本数据内容中提取出不重复的单词进行分词,每1个单词对应1个ID对单词进行区分,还对应1个该单词在那些文档中出现的列表 把这些信息组建成索引。
倒排索引还记录了该单词在文档中出现位置、频率(次数/TF)用于快速定位文档和对搜素结果进行排序。
(出现在文档1,<11位置>频率1次) (1,<11>,1),(2,<7>,1),(3,<3,9>,2)
2.全文检索
全文检索:把用户输入的关键词也进行分词,利用倒排索引,快速锁定关键词出现在那些文档。
说白了就是根据value查询key(根据文档中内容关键字,找到该该关键字所在的文档的)而非根据key查询value。
3.Lucene
Lucene是apache软件基金会4 jakarta项目组的一个java子项目,是一个开放源代码的全文检索引擎JAR包。帮助我我们实现了以上的需求。
lucene实现倒排索引之后,那么海量的数据如何分布式存储?如何高可用?集群节点之间如何管理?这是Elasticsearch实现的功能。
常说的ELK是Elasticsearch(全文搜素)+Logstash(内容收集)+Kibana(内容展示)三大开源框架首字母大写简称。
本文主要简单的介绍Elaticsearch,Elasticsearch是一个基于Lucene的分布式、高性能、可伸缩的搜素和分析系统,它提供了RESTful web API。
Elasticsearch安装
官网下载
ES的版本和Kibana的版本必须一致,官网下载比较慢,还好有好心人。
系统配置
vm.max_map_count = 655360
权限
chown -R elsearch:elsearch /data/elastic-search
安全
/etc/security/limits.conf
[root@zhanggen config]# java -version openjdk version "1.8.0_102" OpenJDK Runtime Environment (build 1.8.0_102-b14) OpenJDK 64-Bit Server VM (build 25.102-b14, mixed mode) [root@zhanggen config]# cat /etc/security/limits.conf * soft nofile 65536 * hard nofile 131072 * soft nproc 4096 * hard nproc 4096
es配置文件
# ======================== Elasticsearch Configuration ========================= # # NOTE: Elasticsearch comes with reasonable defaults for most settings. # Before you set out to tweak and tune the configuration, make sure you # understand what are you trying to accomplish and the consequences. # # The primary way of configuring a node is via this file. This template lists # the most important settings you may want to configure for a production cluster. # # Please consult the documentation for further information on configuration options: # https://www.elastic.co/guide/en/elasticsearch/reference/index.html # # ---------------------------------- Cluster ----------------------------------- # # Use a descriptive name for your cluster: # cluster.name: my-application # # ------------------------------------ Node ------------------------------------ # # Use a descriptive name for the node: # node.name: node-1 # # Add custom attributes to the node: # #node.attr.rack: r1 # # ----------------------------------- Paths ------------------------------------ # # Path to directory where to store the data (separate multiple locations by comma): # path.data: /data/elastic-search/data/ # # Path to log files: # path.logs: /data/elastic-search/log/ # # # ----------------------------------- Memory ----------------------------------- # # Lock the memory on startup: # #bootstrap.memory_lock: false # # Make sure that the heap size is set to about half the memory available # on the system and that the owner of the process is allowed to use this # limit. # # Elasticsearch performs poorly when the system is swapping the memory. # # ---------------------------------- Network ----------------------------------- # # Set the bind address to a specific IP (IPv4 or IPv6): # network.host: 0.0.0.0 # # Set a custom port for HTTP: # http.port: 9200 # # For more information, consult the network module documentation. # # --------------------------------- Discovery ---------------------------------- # # Pass an initial list of hosts to perform discovery when this node is started: # The default list of hosts is ["127.0.0.1", "[::1]"] # #discovery.seed_hosts: ["host1", "host2"] # # Bootstrap the cluster using an initial set of master-eligible nodes: # cluster.initial_master_nodes: ["node-1"] # # For more information, consult the discovery and cluster formation module documentation. # # ---------------------------------- Gateway ----------------------------------- # # Block initial recovery after a full cluster restart until N nodes are started: # #gateway.recover_after_nodes: 3 # # For more information, consult the gateway module documentation. # # ---------------------------------- Various ----------------------------------- # # Require explicit names when deleting indices: # #action.destructive_requires_name: true
启动
[elsearch@zhanggen /]$ ./elasticsearch-7.3.2/bin/elasticsearch
访问
Elasticsearch使用
关于Elasticsearch的使用都是基于RESTful风格的API进行的。
1.查看健康状态
http://192.168.56.135:9200/_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent 1590655194 08:39:54 my-application green
2.创建索引
{ "acknowledged": true, "shards_acknowledged": true, "index": "web" }
3.删除索引
{ "acknowledged": true }
4.插入数据
request body
{ "name":"张根", "age":22, "marrid":"false" }
response body
{ "_index": "students", "_type": "go", "_id": "cuWEWnIBWnQK6MVivzvO", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 0, "_primary_term": 1 }
ps:也可以使用PUT方法,但是需要传入id
reqeust body
{ "name":"李渊", "age":1402, "marrid":"true" }
response body
{ "_index": "students", "_type": "go", "_id": "2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "_seq_no": 1, "_primary_term": 1 }
5.查询all
[root@zhanggen zhanggen]# curl -XGET 'localhost:9200/students/go/_search?pretty' -H 'content-Type:application/json' -d '{"query": { "match_all":{}}}'
{ "took" : 211, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 6, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "students", "_type" : "go", "_id" : "cuWEWnIBWnQK6MVivzvO", "_score" : 1.0, "_source" : { "name" : "张根", "age" : 22, "marrid" : "false" } }, { "_index" : "students", "_type" : "go", "_id" : "c-WPWnIBWnQK6MViOzt1", "_score" : 1.0, "_source" : { "name" : "张百忍", "age" : 3200, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "dOWPWnIBWnQK6MVimTsg", "_score" : 1.0, "_source" : { "name" : "李渊", "age" : 1402, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "deWQWnIBWnQK6MViazuu", "_score" : 1.0, "_source" : { "name" : "姜尚", "age" : 5903, "marrid" : "fale" } }, { "_index" : "students", "_type" : "go", "_id" : "duWSWnIBWnQK6MViXDtD", "_score" : 1.0, "_source" : { "name" : "孛儿只斤.铁木真", "age" : 814, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "2", "_score" : 1.0, "_source" : { "query" : { "match" : { "name" : "张根" } } } } ] } }
6.分页查询 (from, size)
from 偏移,默认为0,size 返回的结果数,默认为10
[root@zhanggen zhanggen]# curl -XGET 'localhost:9200/students/go/_search?pretty' -H 'content-Type:application/json' -d '{ "query": { "match_all": {} }, "from":1, "size":2 }'
返回
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 6, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "students", "_type" : "go", "_id" : "c-WPWnIBWnQK6MViOzt1", "_score" : 1.0, "_source" : { "name" : "张百忍", "age" : 3200, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "dOWPWnIBWnQK6MVimTsg", "_score" : 1.0, "_source" : { "name" : "李渊", "age" : 1402, "marrid" : "true" } } ] } }
7.模糊查询字段中包含某些关键词
[root@zhanggen zhanggen]# curl -XGET 'localhost:9200/students/go/_search?pretty' -H 'content-Type:application/json' -d '{"query": {"term": {"name":"张"}}}'
返回
{ "took" : 155, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 0.8161564, "hits" : [ { "_index" : "students", "_type" : "go", "_id" : "cuWEWnIBWnQK6MVivzvO", "_score" : 0.8161564, "_source" : { "name" : "张根", "age" : 22, "marrid" : "false" } }, { "_index" : "students", "_type" : "go", "_id" : "c-WPWnIBWnQK6MViOzt1", "_score" : 0.7083998, "_source" : { "name" : "张百忍", "age" : 3200, "marrid" : "true" } } ] } }
8.range范围查找
范围查询接收以下参数:
- gte:大于等于
- gt:大于
- lte:小于等于
- lt:小于
- boost:设置查询的推动值(boost),默认为1.0
curl -XGET 'localhost:9200/students/go/_search?pretty' -H 'content-Type:application/json' -d '{"query":{"range":{"age":{"gt":"18"}}}}'
{ "took" : 11, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 5, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "students", "_type" : "go", "_id" : "cuWEWnIBWnQK6MVivzvO", "_score" : 1.0, "_source" : { "name" : "张根", "age" : 22, "marrid" : "false" } }, { "_index" : "students", "_type" : "go", "_id" : "c-WPWnIBWnQK6MViOzt1", "_score" : 1.0, "_source" : { "name" : "张百忍", "age" : 3200, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "dOWPWnIBWnQK6MVimTsg", "_score" : 1.0, "_source" : { "name" : "李渊", "age" : 1402, "marrid" : "true" } }, { "_index" : "students", "_type" : "go", "_id" : "deWQWnIBWnQK6MViazuu", "_score" : 1.0, "_source" : { "name" : "姜尚", "age" : 5903, "marrid" : "fale" } }, { "_index" : "students", "_type" : "go", "_id" : "duWSWnIBWnQK6MViXDtD", "_score" : 1.0, "_source" : { "name" : "孛儿只斤.铁木真", "age" : 814, "marrid" : "true" } } ] } }
安装Kibana
kibana是针对elasticsearch操作及数据展示的工具,支持中文。安装时请确保kibama和Elasticsearch的版本一致。
配置文件
[root@zhanggen config]# cat ./kibana.yml|grep -Ev '^$|#' server.port: 5601 server.host: "0.0.0.0" elasticsearch.hosts: ["http://localhost:9200"] elasticsearch.username: "kibana" elasticsearch.password: "xxxxxxx" i18n.locale: "zh-CN" [root@zhanggen config]#
启动
[root@zhanggen bin]# ./kibana --allow-root
kibana使用
管理-----》kibana索引模式-----》创建索引模式
ps:
Elasticsearch果然是全文检索, 666。果然对用户输入的搜素关键词,进行了分词。我输入了(访问日志为例)把包含“问”的文档也搜素出来了!
而不是仅仅搜素内容包含“访问日志为例”这个1个词的文档。
Go操作Elasticsearch
我们使用第三方库https://github.com/olivere/elastic来连接ES并进行操作。
注意下载与你的ES相同版本的client,例如我们这里使用的ES是7.2.1的版本,那么我们下载的client也要与之对应为github.com/olivere/elastic/v7
。
使用go.mod
来管理依赖下载指定版本的第三库:
module go相关模块/elasticsearch go 1.13 require github.com/olivere/elastic/v7 v7.0.4
代码
package main import ( "context" "fmt" "github.com/olivere/elastic/v7" ) // Elasticsearch demo type Person struct { Name string `json:"name"` Age int `json:"age"` Married bool `json:"married"` } func main() { client, err := elastic.NewClient(elastic.SetURL("http://192.168.56.135:9200/")) if err != nil { // Handle error panic(err) } fmt.Println("connect to es success") p1 := Person{Name: "曹操", Age: 155, Married: true} put1, err := client.Index(). Index("students").Type("go"). BodyJson(p1). Do(context.Background()) if err != nil { // Handle error panic(err) } fmt.Printf("Indexed user %s to index %s, type %s ", put1.Id, put1.Index, put1.Type) }