zoukankan      html  css  js  c++  java
  • poj 1655 Balancing Act

    Balancing Act
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14066   Accepted: 5937

    Description

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
    For example, consider the tree: 

    Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

    For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

    Input

    The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

    Output

    For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

    Sample Input

    1
    7
    2 6
    1 2
    1 4
    4 5
    3 7
    3 1
    

    Sample Output

    1 2

    Source

    树的重心

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn =  20003;
    int m;
    struct node{
        int v,next;
    }edge[100000];int head[maxn],num;
    void add_edge(int x ,int y)
    {
        edge[++num].v=y;edge[num].next=head[x];head[x]=num;
    }
    bool vis[maxn];int son[maxn];
    int siz=0x7fffffff,ans;
    void dfs(int x)
    {
        vis[x]=1;
        son[x]=0;
        int tmp=0;
        for(int i=head[x];i;i=edge[i].next)
        {
            int v=edge[i].v;
            if(vis[v])continue;
            dfs(v);
            son[x]+=(son[v]+1);
            tmp=max(son[v]+1,tmp);
        }
        tmp=max(tmp,m-son[x]-1);
        if(tmp<siz || tmp==siz && ans>x)
        {
            ans=x;
            siz=tmp;
        }
        
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            memset(vis,0,sizeof vis);num=0;siz=0x7fffffff;ans=0;
            memset(head,0,sizeof(head));
            scanf("%d",&m);
            int a,b;
            for(int i=1;i<m;i++)
            {
                scanf("%d%d",&a,&b);
                add_edge(a,b);add_edge(b,a);
            }
            dfs(1);
            printf("%d %d
    ",ans,siz);
        }
        return 0;
    }
  • 相关阅读:
    《网络是怎样连接的》读书笔记一
    移植mplayer到开发板
    解决ubuntu安装ssh服务无法打开解析包问题
    嵌入式软件工程师面经
    c语言-数组、指针面试题
    Linux命令- echo、grep 、重定向、1>&2、2>&1的介绍
    回调函数的作用
    数据结构-单链表回环函数判断
    算法-一步步教你如何用c语言实现堆排序(非递归)
    算法-快速排序
  • 原文地址:https://www.cnblogs.com/sssy/p/7197091.html
Copyright © 2011-2022 走看看