题目描述
Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers , and , find the number of integer pairs satisfying the following conditions:
,,, where is the greatest common divisor of and ".
Byteasar would like to automate his work, so he has asked for your help.
TaskWrite a programme which:
reads from the standard input a list of queries, which the Byteasar has to give answer to, calculates answers to the queries, writes the outcome to the standard output.
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
输入输出格式
输入格式:
The first line of the standard input contains one integer (),denoting the number of queries.
The following lines contain three integers each: , and (), separated by single spaces.
Each triplet denotes a single query.
输出格式:
Your programme should write lines to the standard output. The 'th line should contain a single integer: theanswer to the 'th query from the standard input.
输入输出样例
2 4 5 2 6 4 3
2
莫比乌斯反演
详见如下
那么就可以在O(n)复杂度内求出
也可以优化到O(sqrt(n))
详见code
#include<cstdio> #include<algorithm> using namespace std; const int maxn = 50010; int a,b,d; int n; int mu[maxn]; int prime[maxn],is_prime[maxn]; void get_mu() { int num=0; mu[1]=1; for(int i=2;i<=50000;i++) { if(!is_prime[i]){ mu[i]=-1;prime[++num]=i; } for(int j=1;j<=num&&i*prime[j]<=50000;j++) { is_prime[i*prime[j]]=1; if(i%prime[j]==0) { mu[i*prime[j]]=0;break; } mu[i*prime[j]]=-mu[i]; } } for(int i=1;i<=50000;i++){ mu[i]=mu[i]+mu[i-1]; } } int main() { scanf("%d",&n); get_mu(); while(n--) { scanf("%d%d%d",&a,&b,&d); a/=d,b/=d; int ans=0;int last; for(int i=1;i<=a&&i<=b;i=last+1) { last=min(a/(a/i),b/(b/i)); ans+=(mu[last]-mu[i-1])*(a/i)*(b/i); } printf("%d ",ans); } return 0; }