zoukankan      html  css  js  c++  java
  • 左偏树+菲波那切堆

    左偏树

    维护对的性质,同时维护dis值保证合并复杂度

    合并时类似于可持久化treap

    #include<cstdio>
    #include<algorithm>
    
    inline int read() {
        int x=0;char c=getchar();
        while(c<'0'||c>'9')c=getchar();
        while(c<='9'&&c>='0')x=x*10+c-'0',c=getchar();
        return x;
    }
    const int maxn = 100010;
    struct node {
        int fa,dis,key,ch[2];
        node() {
            key=fa=dis=0;
        }
    }tree[maxn];
    inline int ls(int x) {return tree[x].ch[0];}
    inline int rs(int x) {return tree[x].ch[1];}
    int n,m;
    int find(int x) {
        if(tree[x].fa)  return find(tree[x].fa);
        else return x;
    }
    inline void update(int x) {
        tree[x].dis=tree[tree[x].ch[1]].dis+1;
    }
    int merge(int x,int y) {
        if(!x||!y)return x+y;
        if(tree[x].key>tree[y].key||(tree[x].key==tree[y].key&&x>y))std::swap(x,y);
        tree[x].ch[1]=merge(tree[x].ch[1],y);
        tree[tree[x].ch[1]].fa=x;
        if(tree[tree[x].ch[1]].dis>tree[tree[x].ch[0]].dis)std::swap(tree[x].ch[0],tree[x].ch[1]);
        update(x);
        return x;
    }
    void delet(int x) {
        int now=tree[x].fa;int top=merge(tree[x].ch[1],tree[x].ch[0]);
        tree[top].fa=now;tree[x].key=-1;
        while(now) {
            if(tree[tree[now].ch[0]].dis<tree[tree[now].ch[1]].dis)std::swap(tree[now].ch[0],tree[now].ch[1]);
            if(tree[now].dis==tree[tree[now].ch[1]].dis+1)return;
            tree[now].dis=tree[tree[now].ch[1]].dis+1;
            now=tree[now].fa;
        }
    }
    int main() {
        n=read(),m=read();
        for(int i=1;i<=n;++i) tree[i].key=read();
        while(m--) {
            int op=read();
            if(op==1) {
                int x=read(),y=read();
                if(tree[x].key==-1||tree[y].key==-1||x==y)continue;
                merge(find(x),find(y));
            }
            else {
                int x=read();
                if(tree[x].key==-1)puts("-1");
                else x=find(x),
                printf("%d
    ",tree[x].key),
                delet(x);
            }
        }
        return 0; 
    }
    左偏树

    斐波那契堆

  • 相关阅读:
    83. Remove Duplicates from Sorted List
    35. Search Insert Position
    96. Unique Binary Search Trees
    94. Binary Tree Inorder Traversal
    117. Populating Next Right Pointers in Each Node II
    116. Populating Next Right Pointers in Each Node
    111. Minimum Depth of Binary Tree
    169. Majority Element
    171. Excel Sheet Column Number
    190. Reverse Bits
  • 原文地址:https://www.cnblogs.com/sssy/p/8029915.html
Copyright © 2011-2022 走看看