zoukankan      html  css  js  c++  java
  • bzoj3529: [Sdoi2014]数表

    题目链接

    bzoj3529: [Sdoi2014]数表

    题解

    (d(x))表示(x)的约数和
    就是求这个$$sum_{i = 1}^nsum_{j = 1}^{m} d(gcd(i,j)) leq a$$
    首先,我们不考虑a
    (f(x)=sum_i^nsum_j^m gcd(i,j) == x)
    那么$f(x) = sum_{x|p}mu(frac{p}{x})lfloor frac{n}{p} floorlfloorfrac{m}{p} floor $
    则答案就是

    [sum_x^{min(n,m)}f(x)d(x) ]

    [=sum_x^{min(n,m)}d(x)sum_{x|p} mu(frac{p}{x})lfloor frac{n}{p} floorlfloorfrac{m}{p} floor ]

    [sum_p^{min(n,m)}lfloor frac{n}{p} floorlfloorfrac{m}{p} floor sum_{x|p}mu(frac{p}{x})d(x)]

    对于(d())我们可以nlogn筛出来
    考虑a的限制,我们可以离线做
    对于(sum_{x|p}mu(frac{p}{x})d(x))这部分
    对于询问a的排序,对于(d(i))排序,对于每次询问,把(f(i)leq a)的每个(i)按上式丢到一个bit里维护一下前缀和,就可以偷税的数论分块了
    复杂度(O(sqrt {n} logn + nlog^2n))

    代码

    #include <queue> 
    #include <cstdio> 
    #include <algorithm> 
    inline int read() { 
        int x = 0; 
        char c = getchar(); 
        while(c < '0' || c > '9')c = getchar();	 
        while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
        return x; 
    } 
    const int mod = (1 << 31); 
    const int maxn = 100007; 
    int p[maxn],mu[maxn],mx; bool vis[maxn]; 
    struct node { 
        int n,m,a,id; 
        bool operator < (const node & k)const { 
            return a < k.a; 
        } 
    } q[maxn]; 
    std::pair<int,int>F[maxn]; 
    void getmu() { 
        int size = mx,num = 0; 
        mu[1] = 1; 
        for(int i = 2;i <= size;++ i) { 
            if(!vis[i]) p[++ num] = i,mu[i] = -1; 
            for(int j = 1;j <= num && i * p[j] <= size;++ j) {  
                vis[i * p[j]] = true; 
                if(i % p[j] == 0) { 
                    mu[i * p[j]] = 0; break; 
                } mu[i * p[j]] = -mu[i];  
            } 
        } 
        for(int i = 1;i <= size;++ i) 
            for(int j = i;j <= size;j += i) 
                F[j].first += i; 
        for(int i = 1;i <= size;++ i)F[i].second = i; 
    } 
    int ans[maxn]; 
    #define lowbit(x) x&(-x)
    int bit[maxn << 1]; 
    void add(int x,int num) { 
        for(int i = x;i <= mx; i += lowbit(i))bit[i] += num; 
    } 
    int query(int x) { 
        int ret = 0; 
        for(int i = x;i; i -= lowbit(i)) ret += bit[i]; 
        return ret; 
    } 
    void solve(int x) { 
        int n = q[x].n,m = q[x].m; 
        for(int i = 1,j;i <= q[x].n;i = j + 1) { 
            j = std::min(m / (m / i),n / (n/i)); 
            ans[q[x].id] += (n / i) * (m / i) * (query(j) - query(i - 1)); 
        } 
    } 
    int main() { 
        int k = read(); 
        for(int i = 1;i <= k;++ i) { 
            q[i].n = read(),q[i].m = read(),q[i].a = read(); 
            if(q[i].n > q[i].m) std::swap(q[i].n,q[i].m); 
            q[i].id = i; mx = std::max(mx,q[i].n); 
        } 
        getmu(); 
        std::sort(q + 1,q + k + 1); 
        std::sort(F + 1,F + mx + 1); 
        for(int i = 1,now = 0;i <= k;++ i) { 
            for(;now + 1 <= mx && F[now + 1].first <= q[i].a;) { 
                now ++; 
                for(int j = F[now].second;j <= mx;j += F[now].second) { 
                    //printf("%d
    ",now); 
                    add(j,F[now].first * mu[j / F[now].second]); 
                } 
            } 
            solve(i); 
        } 
        //printf("%d
    ",mod); 
        for(int i = 1;i <= k;++ i) { 
            printf("%d
    ",ans[i] & 0x7fffffff ); 
        } 
        return 0; 
    }
    
  • 相关阅读:
    代理模式(Proxy)
    桥接模式(Bridge)
    组合模式(Composite)
    装饰器模式(Decorator)
    外观模式(Facade)
    享元模式(FlyWeight)
    职责链模式(Chain of Responsibility)
    迭代器模式(Iterator)
    中介者模式(Mediator)
    命令模式(Command)
  • 原文地址:https://www.cnblogs.com/sssy/p/9184265.html
Copyright © 2011-2022 走看看