题目链接
题解
dis:后缀和
sum:前缀和
补集转化,减去少走的,得到转移方程
dp[i] = min(tot - sumj * disj - (sumi - sumj) * disi
不需要斜率优化吧?反正也是个SB式子
代码
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' ||c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x* 10 + c -'0',c = getchar();
return x *f ;
}
const int maxn = 200007;
int dp[maxn],dis[maxn],sum[maxn];
int tot = 0;
int main() {
int n = read();
for(int a,b,i = 1;i <= n;++ i) {
a = read(),b = read();
sum[i] = sum[i - 1] + a; dis[i] += b;
tot += sum[i] * b;
}
for(int i = n;i >= 1;-- i) dis[i] = dis[i] + dis[i + 1];
//printf("%d
",tot);
memset(dp,0x3f,sizeof dp);
int ans = 0x3f3f3f3f;
for(int i = 1;i <= n;++ i) {
for(int j = 1;j < i;++ j) {
dp[i] = min(tot - sum[j] * dis[j] - (sum[i] - sum[j]) * dis[i],dp[i]);
}
ans = min(ans,dp[i]);
}
printf("%d
",ans);
return 0;
}