zoukankan      html  css  js  c++  java
  • AGC027 B


    目录

    题目链接

    AGC027 B - Garbage Collector

    题解

    对于一组选取组的最优方案为,走到一点,然后顺着路径往回取点
    设选取点坐标升序为{a,b,c,d}
    那么消耗为(d+(d - c) + 4* (d - c) + 9 * (c - d) + 16 * (b - a) + a * 25)
    化简后为(5d + 5c + 7b - 9a),那个对于这组k的最优解显然是让最远的点系数最小
    考虑把序列划分为n / k组,枚举这个k计算,那么复杂度是调和级数的

    代码

    
    #include<cstdio> 
    #include<cstring> 
    #include<algorithm> 
    #define gc getchar() 
    #define pc putchar 
    #define int long long
    inline int read() { 
    	int x = 0,f = 1; 
    	char c = gc; 
    	while(c < '0' || c > '9') {if(c == '-')f = -1; char c = getchar();} 
    	while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar(); 
    	return x * f; 
    } 
    void print(long long  x) { 
    	if(x < 0) { 
    		pc('-'); 
    		x = -x; 
    	} 
    	if(x >= 10) print(x / 10); 
    	pc(x % 10 + '0'); 
    } 
    const int maxn = 500007; 
    #define LL long long 
    LL ans; 
    LL sum[maxn],a[maxn]; 
    main() { 
    	LL n = read(), x = read(); 
    	for(int i = 1;i <= n;++ i) a[i] = read(),sum[i] = sum[i - 1] + a[i],ans += 1ll * 5 * a[i] + 2ll * x; 
    	for(int k = 1;k < n;++ k) { 
    		LL tmp = k * x; 
    		for(int nxj,j = n,cnt = 1;j > 0;j = nxj,cnt ++) {
    			nxj = std::max(j - k,0ll); 
    			LL s = sum[j] - sum[nxj]; 
    			tmp += std::max(5ll,cnt * 2ll + 1ll) * s;  
    			if(tmp > ans) break;  
    		} 
    		ans = std::min(ans,tmp); 
    	} 
    	print(ans + 1ll * n * x); pc('
    '); 
    	return 0; 
    } 
    
  • 相关阅读:
    Transformer详解
    PAT 1012
    PAT 1011
    PAT 1010
    Jordan Lecture Note-3: 梯度投影法
    PAT 1009
    PAT 1008
    Jordan Lecture Note-2: Maximal Margin Classifier
    PAT 1007
    PAT 1006
  • 原文地址:https://www.cnblogs.com/sssy/p/9703337.html
Copyright © 2011-2022 走看看