zoukankan      html  css  js  c++  java
  • SDN实验---Mininet实验(玩转流表)

    一:实验目的

    (一)案例目的

    (二)实验内容

     

    (三)网络拓扑结构 

    二:OpenFlow流表实验准备

    (一)使用Python设置网络拓扑 --- tree_topo.py

    from mininet.topo import Topo
    from mininet.net import Mininet
    from mininet.node import RemoteController
    from mininet.link import TCLink
    from mininet.util import dumpNodeConnections
    
    class MyTopo(Topo):
    
        def __init__(self):
            super(MyTopo,self).__init__()
    
            # add host
            Host1 = self.addHost('h1')
            Host2 = self.addHost('h2')
            Host3 = self.addHost('h3')
    
            switch1 = self.addSwitch('s1')
            switch2 = self.addSwitch('s2')
    
            self.addLink(Host1,switch1)
            self.addLink(Host2,switch1)
            self.addLink(Host3,switch2)
            self.addLink(switch1,switch2)
    
    topos = {"mytopo":(lambda:MyTopo())}

    (二)启动远程Ryu控制器

     ryu-manager simple_switch.py  注意,该控制器py文件在app目录下

    # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
    # implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    """
    An OpenFlow 1.0 L2 learning switch implementation.
    """
    
    
    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_0
    from ryu.lib.mac import haddr_to_bin
    from ryu.lib.packet import packet
    from ryu.lib.packet import ethernet
    from ryu.lib.packet import ether_types
    
    
    class SimpleSwitch(app_manager.RyuApp):  不同与之前的Ryu实验,这里面没有在交换机初始连接时下发默认流表...待思考
        OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
    
        def __init__(self, *args, **kwargs):
            super(SimpleSwitch, self).__init__(*args, **kwargs)
            self.mac_to_port = {}
    
        def add_flow(self, datapath, in_port, dst, src, actions):  下发流表
            ofproto = datapath.ofproto
    
            match = datapath.ofproto_parser.OFPMatch(
                in_port=in_port,
                dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))
    
            mod = datapath.ofproto_parser.OFPFlowMod(
                datapath=datapath, match=match, cookie=0,
                command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
                priority=ofproto.OFP_DEFAULT_PRIORITY,
                flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
            datapath.send_msg(mod)
    
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def _packet_in_handler(self, ev):  交换机向控制器发送数据
            msg = ev.msg
            datapath = msg.datapath
            ofproto = datapath.ofproto
    
            pkt = packet.Packet(msg.data)
            eth = pkt.get_protocol(ethernet.ethernet)
    
            if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                # ignore lldp packet
                return
            dst = eth.dst
            src = eth.src
    
            dpid = datapath.id
            self.mac_to_port.setdefault(dpid, {})
    
            self.logger.info("packet in %s %s %s %s", dpid, src, dst, msg.in_port)
    
            # learn a mac address to avoid FLOOD next time.
            self.mac_to_port[dpid][src] = msg.in_port
    
            if dst in self.mac_to_port[dpid]:
                out_port = self.mac_to_port[dpid][dst]
            else:
                out_port = ofproto.OFPP_FLOOD
    
            actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]
    
            # install a flow to avoid packet_in next time
            if out_port != ofproto.OFPP_FLOOD:
                self.add_flow(datapath, msg.in_port, dst, src, actions)
    
            data = None
            if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                data = msg.data
    
            out = datapath.ofproto_parser.OFPPacketOut(
                datapath=datapath, buffer_id=msg.buffer_id, in_port=msg.in_port,
                actions=actions, data=data)
            datapath.send_msg(out)
    
        @set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
        def _port_status_handler(self, ev):
            msg = ev.msg
            reason = msg.reason
            port_no = msg.desc.port_no
    
            ofproto = msg.datapath.ofproto
            if reason == ofproto.OFPPR_ADD:
                self.logger.info("port added %s", port_no)
            elif reason == ofproto.OFPPR_DELETE:
                self.logger.info("port deleted %s", port_no)
            elif reason == ofproto.OFPPR_MODIFY:
                self.logger.info("port modified %s", port_no)
            else:
                self.logger.info("Illeagal port state %s %s", port_no, reason)

    (三)Mininet开始启动网络拓扑

    sudo mn --custom tree_topt.py --topo=mytopo --controller=remote,ip=127.0.0.1,port=6633

    注意:应该是主机连接发送了数据,导致控制器对网络进行了拓扑收集,问题同上:SDN实验---Ryu的应用开发(二)Learning Switch

    三:进行OpenFlow流表分析

    (一)主要流表操作命令

    dpctl dump-flows    查看静态流表

    dpctl del-flows    删除所有交换机中的流表
    dpctl add-flow in_port=1,actions=output:2  添加流表项到所有交换机,注意:一般是成对添加,实现双方通信

    sh ovs-ofctl del-flows s1 in_port=2  删除指定交换机的,匹配in_port=2的流表
    dpctl del-flows in_port=1    删除所有交换机中符合in_port=1的流表

    dpctl add-flow in_port=2,actions=drop    添加丢弃数据包的流表项

    (二)先解决上面问题,是不是启动Mininet后进行了数据包发送,导致控制器下发流表

    重新启动Ryu和Mininet,直接查看交换机中是否有流表.

    1.先启动交换机,查看流表,为空

    2.启动控制器,之后再查看交换机中流表信息,依旧为空

    3.主机使用pingall命令后,查看流表,发生变化

    已解决。但是交换机是如何设置默认流表当不知道packet如何处理的时候发生给控制器?如果这是默认动作,那么我们之前Ryu实验中为何要实现    
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures,CONFIG_DISPATCHER)
        def switch_features_handler(self,ev):    ?????
    经过启动hub.py在控制器上,进行测试,发现会进入switch_features_handler,并且会下发默认流表---所以说,我们可以不用设置这个默认流表也可以,但是这个函数中,我们可以设置一些其他的流表进行控制---所以说还是比较有用的

    注意从(三)开始的实验我们需要关闭控制器Ryu进行

    (三)删除所有流表

    由于没有流表,所有ping操作不可达

    (四)添加h1与和h2之间的流表转发

    1.单个交换机操作

    2.h1 ping h2,信息可达(因为有流表进行指导)

    3.h1 ping h3,消息不可达(因为交换机2中没有流表项,并且交换机1也没有配置到port3的动作

    4.实现所有网络所有主机互通(先清空流表)

    为所有交换机添加端口1和端口2的操作---两个交换机公共操作

    dpctl add-flow in_port=1,actions=output:2  
    dpctl add-flow in_port=2,actions=output:1

    为交换机之间端口提供交互---只操作s1(因为只有s1有端口3)

    sh ovs-ofctl add-flow s1 in_port=1,actions=output:2,3
    sh ovs-ofctl add-flow s1 in_port=3,actions=output:1,2
    sh ovs-ofctl add-flow s1 in_port=2,actions=output:1,3

    实验结果显示

    或者:我们直接添加下面流表也可以实现上面操作

    mininet> dpctl add-flow in_port=1,actions=output:2,3
    mininet> dpctl add-flow in_port=2,actions=output:1,3
    mininet> dpctl add-flow in_port=3,actions=output:1,2

    5.为交换机2添加丢弃流表,使得两个交换机不可通信(在前面互通基础上实现)

    mininet> sh ovs-ofctl del-flows s2 in_port=1  删除原有流表
    mininet> sh ovs-ofctl add-flow s2 in_port=1,actions=drop  添加丢弃流表

  • 相关阅读:
    css 三角形
    转盘
    使用history.back()出现"警告: 网页已过期的解决办法"
    jQuery 左侧滑动
    Go语言数组的使用
    Go的变量作用域
    Go语言中函数的实现
    Go语言循环判断的使用~
    Go基础
    go环境的安装~
  • 原文地址:https://www.cnblogs.com/ssyfj/p/11750559.html
Copyright © 2011-2022 走看看