zoukankan      html  css  js  c++  java
  • Codeforces Round #579 (Div. 3) 题解

    比赛链接https://codeforc.es/contest/1203/

    A. Circle of Students
    题意(T)组询问,每组询问给出(n)个数字,问这(n)个数字能否围成圆环。(围成圆环指,从某一位开始顺时针或逆时针遍历,数组为(1, 2, 3, ..., n)

    分析:把数组复制一份,两个数组首尾相接,正反判定两次即可。

    AC代码

    #include<bits/stdc++.h>
    #define SIZE 200010
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    }
    ll n, m, k, t, a[SIZE];
    int main() {
    	io(); cin >> t;
    	while (t--) {
    		cin >> n;
    		bool flag = true;
    		rep(i, 1, n) cin >> a[i];
    		rep(i, n + 1, n + n) a[i] = a[i - n];
    		rep(i, 1, n) {
    			if (a[i] == 1) {
    				ll cnt = 1;
    				rep(j, i + 1, i + n - 1) {
    					if (++cnt != a[j]) {
    						flag = false;
    						break;
    					}
    				}
    			}
    		}
    		if (flag) cout << "YES
    ";
    		else {
    			flag = true;
    			rep(i, 1, n / 2) swap(a[i], a[n - i + 1]);
    			rep(i, n + 1, n + n) a[i] = a[i - n];
    			rep(i, 1, n) {
    				if (a[i] == 1) {
    					ll cnt = 1;
    					rep(j, i + 1, i + n - 1) {
    						if (++cnt != a[j]) {
    							flag = false;
    							break;
    						}
    					}
    				}
    			}
    			if (flag) cout << "YES
    ";
    			else cout << "NO
    ";
    		}
    	}
    }
    

     
    B. Equal Rectangles
    题意(q)组输入,每组输入给出一个整数(n),然后输入(4n)个整数。判断这些数字能否构成(n)个面积相同的矩形。

    分析:先确定矩形的面积,显然应该是这些整数中的最小值乘最大值。然后我们对这些数排序,每次从首尾分别取两个数字判断是否构成矩形,面积是否相等即可。

    AC代码

    #include<bits/stdc++.h>
    #define SIZE 200010
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    using namespace std;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    }
    int a[SIZE], n, t;
    int main(){
    	io(); cin >> t;
    	while(t--) {
    		cin >> n;
    		rep (i, 1, 4 * n) cin >> a[i];
    		sort(a + 1, a + 4 * n + 1);
    		bool flag = true;
    		int L = 1, R = 4 * n;
    		int s = a[L] * a[R];
    		while(L < R){
    			if(a[L] != a[L + 1] || a[R] != a[R - 1]) { flag = false; break; }
    			else if(s != a[L] * a[R]) { flag = false; break; }
    			L += 2, R -= 2;
    		}
    		if (flag) cout << "YES
    ";
    		else cout << "NO
    ";
    	}
    }
    

     
    C. Common Divisors
    题意:给出(n)个正整数,找出能整除这(n)个数的正整数个数。

    分析:即求最大公因数的因子个数。

    AC代码

    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    #define SIZE 500010
    #define rep(i, a, b) for(long long i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    }
    ll n, m, k, t, cnt = 0, a[SIZE];
    int main() {
    	io(); cin >> n;
    	ll minx = 1e15;
    	rep(i, 1, n) {
    		cin >> a[i];
    		minx = min(minx, a[i]);
    		if (a[i] == 1) { cout << 1; return 0; }
    	}
    	rep(i, 1, n) {
            if (a[i] % minx == 0) continue;
            else minx = __gcd(minx, a[i]);
        }
    	rep(i, 1, sqrt(minx)) {
    		if (minx % i == 0) {
    			if (i * i != minx)cnt += 2;
    			else cnt++;
    		}
    	}
    	cout << cnt;
    }
    

     
    D2. Remove the Substring (hard version)
    题意:给定两个字符串(s)(t),求一个最大的长度(n),使得在字符串(s)中删除连续(n)个字符后(t)仍然可以为(s)的子串。

    分析:我们考虑下面这个样例:
    (asxxxxasdxxxd)
    (asd)
    可以发现我们删除的最大连续(n)个字符有两种情况,一种是从头或尾开始删(像CF给出的样例),另一种就是上面这样删除中间的字符。因此,我们考虑用(t)串去和(s)串匹配,记录前缀和和后缀和,在所有前缀和(+)后缀和(=) (t)串长度的情况中找到最大值。

    AC代码

    #include<bits/stdc++.h>
    #define SIZE 500010
    #define rep(i, a, b) for(long long i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    }
    char s1[SIZE], s2[SIZE];
    int pre[SIZE], post[SIZE], cnt, len1, len2, ans = 0;
    int main() {
    	io(); cin >> (s1 + 1) >> (s2 + 1);
    	len1 = strlen(s1 + 1), len2 = strlen(s2 + 1);
    	for (int i = 1, j = 1; i <= len2; ++i) {
    		while (s1[j] != s2[i]) ++j;
    		pre[i] = j++;
    	}
    	for (int i = len2, j = len1; i; --i) {
    		while (s1[j] != s2[i]) --j;
    		post[i] = j--;
    	}
    	ans = max(len1 - pre[len2], post[1] - 1);
    	rep(i, 1, len2 - 1) ans = max(ans, post[i + 1] - pre[i] - 1);
    	cout << ans;
    }
    

     
    E. Boxers
    题意:有(n)个拳击手,给出他们的体重(a_i),每个拳击手的体重可以加(1)或减(1)(体重必须是正整数),询问最多能选出几个体重不同的拳击手。

    分析:由于数据很小,用一个布尔数组保存所有可能的体重取值,然后贪心。

    AC代码

    #include<bits/stdc++.h>
    #define SIZE 500010
    #define rep(i, a, b) for(long long i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr);
    	cout.tie(nullptr);
    }
    ll n, m, k, t, x, num[SIZE];
    bool a[SIZE];
    int main() {
    	io(); cin >> n;
    	rep(i, 1, n) {
    		cin >> x;
    		a[x] = true;
    		num[x]++;
    	}
    	if (a[1]) a[2] = true;
    	rep(i, 2, 150001)
    		if (a[i])
    			a[i - 1] = a[i + 1] = true;
    	int cnt = 0;
    	rep(i, 1, 150000 + 1) {
    		if (a[i]) {
    			if (num[i - 1]) { num[i - 1]--; cnt++; }
    			else if(num[i]) { num[i]--; cnt++; }
    			else if (num[i + 1]) { num[i + 1]--; cnt++; }
    		}
    	}
    	cout << cnt;
    }
    

     
    F1. Complete the Projects (easy version)
    题意:给定(n)个项目,和一个初始权值(r)。每个项目有两个数值构成,(a)表示要进行这个项目的最低权值需求,(b)表示进行完这个项目后权值将会变化的数值。询问能否完成所有的项目。

    分析:首先我们肯定先做权值变化为正的项目,然后再做变化为负的项目。对于变化为正的项目,我们以(a)为关键字排序,对于变化为负的项目,我们以(a+b)为关键字排序。下证为什么以(a+b)为关键字排序:
    我们考虑两项工作(A_1)(A_2),如果排序时(A_1)在前,则有$$a_1 leq r$$ $$a_2 leq r+b_1$$
    同理,对于(A_2)在前时有$$a_2 leq r$$ $$a_1 leq r+b_2$$
    转化为$$max(a_1, a_2-b_1) leq r$$ $$max(a_2, a_1-b_2) leq r$$
    由于我们需要让(A_1)在前时更优,于是有(max(a_1, a_2-b_1) leq max(a_2, a_1-b_2))。分析后得到这个式子等价于(a_2+b_2 leq a_1+b_1)

    AC代码

    #include <bits/stdc++.h>
    #define SIZE 200010
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    ll n, r, x, y;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(0);
    	cout.tie(0);
    }
    struct node {
    	ll a, b;
    }p1[SIZE], p2[SIZE], tp;
    bool cmp1(node a, node b) {
    	return a.a < b.a;
    }
    bool cmp2(node a, node b) {
    	return a.a + a.b > b.a + b.b;
    }
    int main(){
    	io(); cin >> n >> r;
    	int j = 1, k = 1;
    	rep (i, 1, n) {
    		cin >> tp.a >> tp.b;
    		if (tp.b >= 0) p1[j++] = tp;
    		else p2[k++] = tp;
    	}
    	sort(p1 + 1, p1 + j, cmp1);
    	rep (i, 1, j - 1) {
    		if (r < p1[i].a) { cout << "NO"; return 0; }
    		else r += p1[i].b;
    	}
    	sort(p2 + 1, p2 + k, cmp2);
    	rep (i, 1, k - 1) {
    		if (r < p2[i].a) { cout << "NO"; return 0; }
    		else r += p2[i].b;
    	}
    	if (r >= 0)	cout << "YES";
    	else cout << "NO";
    }
    

     
    F2. Complete the Projects (hard version)
    题意:和easy version基本一样,就是询问变成了最多能做几个项目。

    分析:先排序贪心,然后取负数项目时dp。

    AC代码

    #include <bits/stdc++.h>
    #define SIZE 200010
    #define rep(i, a, b) for(long long i = a; i <= b; ++i)
    using namespace std;
    typedef long long ll;
    void io() {
    	ios::sync_with_stdio(false);
    	cin.tie(0);
    	cout.tie(0);
    }
    int n, r;
    struct node {
    	ll a, b;
    }p1[SIZE], p2[SIZE], tp;
    bool cmp1(node a, node b) {
    	return a.a < b.a;
    }
    bool cmp2(node a, node b) {
    	return a.a + a.b < b.a + b.b;
    }
    int main() {
    	io(); cin >> n >> r;
    	int j = 1, k = 1, cnt = 0;
    	rep(i, 1, n) {
    		cin >> tp.a >> tp.b;
    		if (tp.b >= 0) p1[j++] = tp;
    		else p2[k++] = tp;
    	}
    	sort(p1 + 1, p1 + j, cmp1);
    	rep(i, 1, j - 1) {
    		if (r < p1[i].a) { continue; }
    		else r += p1[i].b;
    		cnt++;
    	}
    	sort(p2 + 1, p2 + k, cmp2);
    	vector<int> dp(r + 1);
    	rep(i, 1, k - 1) {
    		for (int j = r; j >= max(p2[i].a, abs(p2[i].b)); --j) {
    			dp[j] = max(dp[j], dp[j + p2[i].b] + 1);
    		}
    	}
    	cout << cnt + dp[r];
    }
    
  • 相关阅读:
    python 面向对象专题(20):基础(11)多态/封装
    python 面向对象专题(19):基础(10)-继承
    python 面向对象专题(18):基础(9)面向对象应用
    python 面向对象专题(17):基础(8)面向对象基础
    机器学习sklearn(92):算法实例(49)分类(30)XGBoost(六)XGBoost应用中的其他问题
    机器学习sklearn(91):算法实例(48)分类(27)XGBoost(五)XGBoost的智慧(二)参数alpha,lambda
    基于小熊派Hi3861鸿蒙开发的IoT物联网学习【四】
    基于小熊派Hi3861鸿蒙开发的IoT物联网学习【三】
    基于小熊派Hi3861鸿蒙开发的IoT物联网学习【二】
    C语言学习之基本数据类型【一】
  • 原文地址:https://www.cnblogs.com/st1vdy/p/11352620.html
Copyright © 2011-2022 走看看