zoukankan      html  css  js  c++  java
  • 线性回归曲线和过拟合判断

    import matplotlib.pyplot as plt
    import mglearn
    from scipy import sparse
    import numpy as np
    import matplotlib as mt
    import pandas as pd
    from IPython.display import display
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    
    #wave数据集
    #wave数据集只有一个特征
    #公式为y=w[0]x[0]+b
    #w为斜率,b为轴偏移或截距,分别在sklearn中使用 coef_[0],  intercept_表示
    mglearn.plots.plot_linear_regression_wave()
    plt.show()
    
    #boston数据集
    #boston数据集有506个样本,105个特征
    X, y = mglearn.datasets.load_extended_boston()
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    lr = LinearRegression().fit(X_train, y_train)
    print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
    print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))

    结果:

    w[0]: 0.393906 b: -0.031804

    plot_linear_regression_wave源码
    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    from .datasets import make_wave
    from .plot_helpers import cm2
    
    
    def plot_linear_regression_wave():
        X, y = make_wave(n_samples=60)
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
    
        line = np.linspace(-3, 3, 100).reshape(-1, 1)
    
        lr = LinearRegression().fit(X_train, y_train)
        print("w[0]: %f  b: %f" % (lr.coef_[0], lr.intercept_))
    
        plt.figure(figsize=(8, 8))
        plt.plot(line, lr.predict(line))
        plt.plot(X, y, 'o', c=cm2(0))
        ax = plt.gca()
        ax.spines['left'].set_position('center')
        ax.spines['right'].set_color('none')
        ax.spines['bottom'].set_position('center')
        ax.spines['top'].set_color('none')
        ax.set_ylim(-3, 3)
        #ax.set_xlabel("Feature")
        #ax.set_ylabel("Target")
        ax.legend(["model", "training data"], loc="best")
        ax.grid(True)
        ax.set_aspect('equal')

    结果2:


    Training set score: 0.95
    Test set score: 0.61

    可以看出出现了过拟合,这是因为波士顿房价的各个特征的差距非常大,不适合使用最小二乘法,需要使用“正则化”来做显式约束,使用岭回归避免过拟合。

    Ridge岭回归用到L2正则化。

    Lasso回归用到L1正则,还可以使用ElasticNet弹性网络回归。

    
    
  • 相关阅读:
    chm打开看不到内容时好时坏
    pugixml应用随笔
    鸟哥书:记一笔
    c++ stl list使用总结(转)
    增加swap分区
    复制虚拟机,链接网络问题:没有找到合适的设备:没有找到可用于链接System eth0 的
    Python编码相关文章推荐
    Python Counter() 的实现
    Python Counter()计数工具
    浏览器自动化工具-Selenium
  • 原文地址:https://www.cnblogs.com/starcrm/p/11676633.html
Copyright © 2011-2022 走看看