zoukankan      html  css  js  c++  java
  • sklearn使用高斯核SVM显示支持向量

    import graphviz
    import mglearn
    from mpl_toolkits.mplot3d import Axes3D
    from sklearn.datasets import load_breast_cancer, make_blobs
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.tree import DecisionTreeClassifier, export_graphviz
    from IPython.display import display
    import matplotlib.pyplot as plt
    import numpy as np
    import matplotlib as mt
    import pandas as pd
    
    X, y = mglearn.tools.make_handcrafted_dataset()
    svm = SVC(kernel='rbf', C=100, gamma=0.1).fit(X, y)
    mglearn.plots.plot_2d_separator(svm, X, eps=.5)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
    # plot support vectors
    sv = svm.support_vectors_
    print(sv)
    # class labels of support vectors are given by the sign of the dual coefficients
    sv_labels = svm.dual_coef_.ravel() > 0
    mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)
    plt.xlabel("Feature 0")
    plt.ylabel("Feature 1")
    plt.show()

  • 相关阅读:
    实现自动进行金额汇总
    实现模糊查询
    手电筒查询
    lov的建立
    日历 的建立
    快速创建Folder
    TAB页制作
    堆叠画布
    弹性域的开发
    注销记录的实现
  • 原文地址:https://www.cnblogs.com/starcrm/p/11684587.html
Copyright © 2011-2022 走看看