zoukankan      html  css  js  c++  java
  • 多项式的回归

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import PolynomialFeatures
    
    X_train = [[5],[6], [8], [10], [14], [18], [20]]
    y_train = [[5],[7], [9], [13], [17.5], [18], [20]]
    X_test = [[6], [8], [11], [16]]
    y_test = [[8], [12], [15], [18]]
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
    xx = np.linspace(0, 26, 100)
    print(xx)
    #根据线性预测分析0-26的Y值
    yy = regressor.predict(xx.reshape(xx.shape[0], 1))
    #绘画X_Y关系直线
    plt.plot(xx, yy)
    quadratic_featurizer = PolynomialFeatures(degree=3)
    X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
    X_test_quadratic = quadratic_featurizer.transform(X_test)
    regressor_quadratic = LinearRegression()
    regressor_quadratic.fit(X_train_quadratic, y_train)
    xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
    print(xx_quadratic)
    plt.plot(xx, regressor_quadratic.predict(xx_quadratic), c='r', linestyle='--')
    plt.title('Pizza price regressed on diameter')
    plt.xlabel('Diameter in inches')
    plt.ylabel('Price in dollars')
    plt.axis([0, 25, 0, 25])
    plt.grid(True)
    plt.scatter(X_train, y_train)
    plt.show()
    print(X_train)
    print(X_train_quadratic)
    print(X_test)
    print(X_test_quadratic)
    print('Simple linear regression r-squared', regressor.score(X_test, y_test))
    print('Quadratic regression r-squared', regressor_quadratic.score(X_test_quadratic, y_test))

  • 相关阅读:
    MyBatis中文文档
    网络编程
    Django
    Django
    Django
    Django
    Django
    Django
    Django
    Django
  • 原文地址:https://www.cnblogs.com/starcrm/p/11714695.html
Copyright © 2011-2022 走看看