zoukankan      html  css  js  c++  java
  • 【洛谷 P5748】集合划分计数(多项式exp)

    传送门

    考虑非空集合集合的EGFEGFf(x)=ex1f(x)=e^x-1

    贝尔数就是任意划分集合的方案数,设EGFEGFg(x)g(x)

    g=efg=e^f

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int mod=998244353;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    inline int fix(int x){return (x<0)?x+mod:x;}
    cs int N=500005;
    int fac[N],ifac[N],iv[N];
    inline void init_inv(cs int len=N-5){
    	iv[0]=iv[1]=fac[0]=ifac[0]=1;
    	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
    	ifac[len]=Inv(fac[len]);
    	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    	for(int i=2;i<=len;i++)iv[i]=mul(mod-mod/i,iv[mod%i]);
    }
    typedef vector<int> poly;
    namespace Poly{
    	cs int G=3,C=21,M=(1<<C)+1;
    	int *w[C+1];
    	int rev[M];
    	inline void init_rev(int lim){
    		for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    	}
    	inline void init_w(){
    		for(int i=1;i<=C;i++)w[i]=new int[(1<<(i-1))+1];
    		int wn=ksm(G,(mod-1)/(1<<C));w[C][0]=1;
    		for(int i=1,l=1<<(C-1);i<l;i++)w[C][i]=mul(w[C][i-1],wn);
    		for(int j=C-1;j;j--)
    		for(int i=0;i<(1<<(j-1));i++)w[j][i]=w[j+1][i<<1];
    	}
    	inline void ntt(int *f,int lim,int kd){
    		for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    		for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
    		for(int i=0;i<lim;i+=mid<<1)
    		for(int j=0;j<mid;j++)
    		a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    		if(kd==-1){
    			reverse(f+1,f+lim);
    			for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
    		}
    	}
    	inline poly operator *(poly a,poly b){
    		int deg=a.size()+b.size()-1;
    		if(deg<=32){
    			poly c(deg,0);
    			for(int i=0;i<a.size();i++)
    			for(int j=0;j<b.size();j++)
    			Add(c[i+j],mul(a[i],b[j]));
    			return c;
    		}
    		int lim=1;
    		while(lim<deg)lim<<=1;
    		init_rev(lim);
    		a.resize(lim),ntt(&a[0],lim,1);
    		b.resize(lim),ntt(&b[0],lim,1);
    		for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    		ntt(&a[0],lim,-1),a.resize(deg);
    		return a;
    	}
    	inline poly Inv(poly a,int deg){
    		poly b(1,::Inv(a[0])),c;
    		for(int lim=4;lim<(deg<<2);lim<<=1){
    			init_rev(lim);
    			c.resize(lim>>1);
    			for(int i=0;i<(lim>>1);i++)c[i]=(i<a.size()?a[i]:0);
    			c.resize(lim),ntt(&c[0],lim,1);
    			b.resize(lim),ntt(&b[0],lim,1);
    			for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    			ntt(&b[0],lim,-1),b.resize(lim>>1);
    		}
    		b.resize(deg);return b;
    	}
    	inline poly deriv(poly a){
    		for(int i=0;i<(int)a.size()-1;i++)a[i]=mul(a[i+1],i+1);a.pop_back();
    		return a;
    	}
    	inline poly integ(poly a){
    		a.pb(0);
    		for(int i=a.size()-1;i;i--)a[i]=mul(a[i-1],iv[i]);
    		a[0]=0;return a;
    	}
    	inline poly Ln(poly a,int deg){
    		a=integ(deriv(a)*Inv(a,deg)),a.resize(deg);return a;
    	}
    	inline poly Exp(poly a,int deg){
    		poly b(1,1),c;
    		for(int lim=2;lim<(deg<<1);lim<<=1){
    			c=Ln(b,lim);
    			for(int i=0;i<lim;i++)c[i]=dec(i<a.size()?a[i]:0,c[i]);
    			Add(c[0],1),b=b*c,b.resize(lim);
    		}b.resize(deg);return b;
    	}
    } 
    using namespace Poly;
    poly ex;
    int main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    	#endif
    	int n=100001;
    	ex.resize(n);
    	init_inv(),init_w();
    	for(int i=1;i<n;i++)ex[i]=ifac[i];
    	ex=Exp(ex,n);
    	int T=read(),x;
    	while(T--)x=read(),cout<<mul(fac[x],ex[x])<<'
    ';
    }
    
  • 相关阅读:
    2018-2019-2 20189203 移动平台应用开发实践第六周学习总结
    安全类会议级别
    信息安全工程实践WEEK5,开发WEEK2
    信息安全工程实践WEEK5,开发WEEK1
    如何在Word中排出漂亮的代码
    2018-2019-1 20189204《Linux内核原理与分析》第九周作业
    2018-2019-1 20189204《Linux内核原理与分析》第八周作业
    2018-2019-1 20189204《Linux内核原理与分析》第七周作业
    2018-2019-1 20189204《Linux内核原理与分析》第六周作业
    2018-2019-1 20189204《Linux内核原理与分析》第五周作业
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328310.html
Copyright © 2011-2022 走看看