zoukankan      html  css  js  c++  java
  • 【BZOJ5093】【Lydsy1711月赛】—图的价值(第二类斯特林数+组合数学)

    传送门


    Hacker rankHacker rank原题付费获得可还行

    考虑每一个点的贡献
    枚举度数,其他所有点之间随便练

    ans=2(n1)(n2)2i=0n1(n1i)ikans=2^{frac{(n-1)*(n-2)}{2}}*sum_{i=0}^{n-1}{n-1choose i}i^k
    由于nn个点都相同,所以最后乘一个nn

    为了好写令n=n1n=n-1
    ans=(n+1)2n(n1)2i=0n(ni)ikans=(n+1)*2^{frac{n*(n-1)}{2}}*sum_{i=0}^{n}{nchoose i}i^k
    我们只考虑计算Ans=i=0n(ni)ikAns=sum_{i=0}^n{nchoose i}i^k

    由于ik=j=0i(i,k)S2(k,j)(ij)j!i^k=sum_{j=0}^{i(这里取i,k都是一样的)}S_2(k,j){ichoose j}j!

    Ans=i=0n(ni)j=0iS2(k,j)(ij)j!Ans=sum_{i=0}^{n}{nchoose i}sum_{j=0}^iS_2(k,j){ichoose j}j!

    =j=0kS2(k,j)i=jn(ni)(ij)j!=sum_{j=0}^k S_2(k,j)sum_{i=j}^{n}{nchoose i}{ichoose j}j!

    由于(ni)(ij)j!=n!i!(ni)!i!j!(ij)!j!=n!(ni!)(ij)!=nj(nj)!(ni)!(ij)!=nj(njij){nchoose i}{ichoose j}j! =frac{n!}{i!(n-i)!}frac{i!}{j!(i-j)!}j!=frac{n!}{(n-i!)(i-j)!}\ = frac{n^{underline j}*(n-j)!}{(n-i)!(i-j)!}=n^{underline j}{n-jchoose i-j}

    Ans=j=0kS2(k,j)nji=jn(njij)Ans=sum_{j=0}^k S_2(k,j)n^{underline j}sum_{i=j}^{n}{n-jchoose i-j}

    =j=0kS2(k,j)nji=0nj(nji)=sum_{j=0}^k S_2(k,j)n^{underline j}sum_{i=0}^{n-j}{n-jchoose i}

    =j=0kS2(k,j)nj2nj=sum_{j=0}^k S_2(k,j)n^{underline j}2^{n-j}

    利用NTTNTT求出S2(k)S_2(k)就完了

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
        char ch=gc();
        int res=0,f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    const int mod=998244353,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
        for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    inline int Inv(int x){
        return ksm(x,mod-2);
    }
    const int N=200005;
    int fac[N],ifac[N];
    inline void init(){
        fac[0]=ifac[0]=1;
        for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
        ifac[N-1]=Inv(fac[N-1]);
        for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    }
    inline int C(int n,int m){
        if(n<m)return 0;
        return mul(fac[n],mul(ifac[m],ifac[n-m]));
    }
    #define poly vector<int>
    int rev[N<<2];
    inline void init_rev(int lim){
        for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(poly &f,int lim,int kd){
        for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
        int bas=kd==-1?G:((mod+1)/G);
        for(int mid=1,a0,a1;mid<lim;mid<<=1){
            int wn=ksm(bas,(mod-1)/(mid<<1));
            for(int i=0;i<lim;i+=(mid<<1)){
                int w=1;
                for(int j=0;j<mid;j++,Mul(w,wn)){
                    a0=f[i+j],a1=mul(f[i+j+mid],w);
                    f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
                }
            }
        }
        if(kd==-1)for(int i=0,inv=Inv(lim);i<lim;i++)Mul(f[i],inv);
    }
    inline poly operator *(poly &a,poly &b){
        int deg=a.size()+b.size()-1,lim=1;
        while(lim<deg)lim<<=1;
        init_rev(lim);
        a.resize(lim),b.resize(lim);
        ntt(a,lim,1),ntt(b,lim,1);
        for(int i=0;i<lim;i++)Mul(a[i],b[i]);
        ntt(a,lim,-1),a.resize(deg);
        return a;
    }
    int n,k;
    poly f,g;
    int main(){
        #ifdef Stargazer
        freopen("lx.cpp","r",stdin);
        #endif 
        n=read()-1,k=read();
        init();
        for(int i=0;i<=k;i++)f.pb((i&1)?mod-ifac[i]:ifac[i]);
        for(int i=0;i<=k;i++)g.pb(mul(ksm(i,k),ifac[i]));
        poly s=f*g;
        int res=0;
        for(int i=0,t=1,nn=n+1,inv=Inv(2),p=ksm(2,n);i<=k;i++,Mul(t,--nn),Mul(p,inv))
            Add(res,mul(s[i],mul(t,p)));
        Mul(res,n+1);
        Mul(res,ksm(2,1ll*n*(n-1)/2%(mod-1)));
        cout<<res;
    }
    
  • 相关阅读:
    [HNOI2015]实验比较 树形dp+组合数学
    【bzoj1090】 [SCOI2003]字符串折叠
    hdu4514(非连通图的环判断与图中最长链)(树的直径)
    数据类型进阶 续1
    数据类型进阶
    二进制补码
    基本数据类型的包装类
    变量的作用域
    用变量保存多种类型的数据
    用变量简化计算
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328720.html
Copyright © 2011-2022 走看看