zoukankan      html  css  js  c++  java
  • Redis 与 数据库处理数据的两种模式

    Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类key-value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Python,Ruby,Erlang,PHP客户端,使用很方便。

      1. 按照我们一般的使用Redis的场景应该是这样的:

      也就是说:我们会先去redis中判断数据是否存在,如果存在,则直接返回缓存好的数据。而如果不存在的话,就会去数据库中,读取数据,并把数据缓存到Redis中。

      适用场合:如果数据量比较大,但不是经常更新的情况(比如用户排行)

      2. 而第二种Redis的使用,跟第一种的情况完成不同,具体的情况请看:

      这里我们会先去redis中判断数据是否存在,如果存在,则直接更新对应的数据(这一步会把对应更新过的key记录下来,比如也保存到redis中比如:key为:save_update_keys【用lpush列表记录】),并把更新后的数据返回给页面。而如果不存在的话,就会去先更新数据库中内容,然后把数据保存一份到Redis中。后面的工作:后台会有相关机制把Redis中的save_update_keys存储的key,分别读取出来,找到对应的数据,更新到DB中。

      优点:这个流程的主要目的是把Redis当作数据库使用,更新获取数据比DB快。非常适合大数据量的频繁变动(比如微博)。

      缺点:对Redis的依赖很大,要做好宕机时的数据保存。(不过可以使用redis的快照AOF,快速恢复的话,应该不会有多大影响,因为就算Redis不工作了,也不会影响后续数据的处理。)

      难点:在前期规划key的格式,存储类型很重要,因为这会影响能否把数据同步到DB。

  • 相关阅读:
    Kinect 开发 —— 硬件设备解剖
    Kinect 开发 —— 引言
    (转)OpenCV 基本知识框架
    OpenCV —— 摄像机模型与标定
    OpenCV —— 跟踪与运动
    OpenCV —— 图像局部与分割(二)
    OpenCV —— 图像局部与部分分割(一)
    OpenCV —— 轮廓
    OpenCV —— 直方图与匹配
    OpenCV —— 图像变换
  • 原文地址:https://www.cnblogs.com/starksoft/p/8681655.html
Copyright © 2011-2022 走看看