学习:https://blog.csdn.net/qq_21334057/article/details/99550805
题意:从n个点中选择k个点构成多边形,问期望面积。
题解:如果能够确定两个点,那么可以从这两个点之间选择k−2个点来构成一个k边形。所以可以枚举两个点,计算这两个点被选入构成凸包的概率和对凸包贡献的面积。
#include <bits/stdc++.h> #define fopi freopen("in.txt", "r", stdin) #define fopo freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef long double ld; const int maxn = 2500 + 10; struct Point { ld x, y; }a[maxn]; ld C[maxn][maxn]; void getC(int n) { C[0][0] = 1; for (int i = 1; i <= n; i++) { C[i][0] = 1; for (int j = 1; j <= i; j++) C[i][j] = C[i-1][j] + C[i-1][j-1]; } } ld Cross(Point a, Point b) { return a.x*b.y - a.y*b.x; } int n, k; int main() { ios::sync_with_stdio(false); cin >> n >> k; getC(n); for (int i = 1; i <= n; i++) cin >> a[i].x >> a[i].y; ld ans = 0; for (int i = 1; i <= n; i++) for (int j = k-1; j <= n-1; j++) { int t = i+j; if (t > n) t -= n; ans += Cross(a[i], a[t]) * C[j-1][k-2] / C[n][k]; } printf("%.7Lf ", ans/2); }