zoukankan      html  css  js  c++  java
  • 数论

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

    Input

    输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

    Output

    输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

    Sample Input

    1 2 3 4 5

    Sample Output

    4


    ------------------------------------------------我是分割线^_^-----------------------------------------------------------

    此题其实就是扩展欧几里德算法-求解不定方程,线性同余方程。设过s步后两青蛙相遇,则必满足以

    下等式:(x+m*s)-(y+n*s)=k*l(k属于整数)

    稍微变一下形得:(n-m)*s+k*l=x-y,令n-m=a, k=b,x-y=c, 即a*s+b*l=c只要上式存在整数解,则两青蛙能相遇

    否则不能。


    是一道乘法逆元的题目,我没管什么原理,直接学习模板的使用,因为太难理解了,看了半天
    还没完全懂扩展欧几里德= =,总之
    在网上看了很多关于不定方程方程求解的问题,可都没有说
    全,都只说了一部分,看了好多之后才真正弄清楚不定方程的求解全过程,步骤如下:

    求a * x + b * y = n的整数解。

    1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),

    得到新的不定方程a' * x + b' * y = n',此时Gcd(a',b')=1;

    2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则n' * x0, n' * y0是方程

    a' * x + b' * y = n'的一组整数解;

    3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为:

    x = n' * x0 + b' * t
    y = n' * y0 - a' * t
    (t为整数)

    上面的解也就是a * x + b * y = n 的全部整数解。

    补充一个网站看到的简便方法,最小非负整数解为(n' * x0 % b' + b') % b'。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<vector>
    #include<queue>
    #include<cctype>
    using namespace std;
    
    #define Int __int64
    #define INF 0x3f3f3f3f
    
    Int ExGcd(Int a, Int b, Int &x, Int &y) {/*注意这个题要求解方程时同时求出最大公约数,公约数单独求会超时= =*/ if (b == 0) { x = 1; y = 0; return a; } Int gcd = ExGcd(b, a % b, x, y); Int t = y; y = x - a / b * y; x = t; return gcd; } int main() { //freopen("input.txt", "r", stdin); Int x, y, m, n, L; while (scanf("%I64d %I64d %I64d %I64d %I64d", &x, &y, &m, &n, &L) != EOF) { Int a = n - m; Int b = L; Int c = x - y; Int x1, y1; Int gcd = ExGcd(a, b, x1, y1); if (c % gcd) { printf("Impossible "); continue; } a /= gcd; b /= gcd; c /= gcd; Int ans = (c * x1 % b + b) % b; printf("%I64d ", ans); } return 0; }
  • 相关阅读:
    ubuntu20.04上实现百度Apollo6.0系统的部署
    matplotlib包图例出现中文乱码问题
    微软官方Silverlight 音频播放器 Jonas修整版(silerlight 2.0版)
    SpringCloud总结1
    Java中文长度计算
    注册退出函数:atexit
    函数参数的一种特殊用法
    new与malloc等的区别
    两种多态
    第一章 1.1.2 因特网提供服务的方式
  • 原文地址:https://www.cnblogs.com/steamedbun/p/5758337.html
Copyright © 2011-2022 走看看