zoukankan      html  css  js  c++  java
  • HDU 1710 Binary Tree Traversals

    Binary Tree Traversals

    Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 42   Accepted Submission(s) : 30

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

    In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

    In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

    In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

    Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

    Input

    The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

    Output

    For each test case print a single line specifying the corresponding postorder sequence.

    Sample Input

    9
    1 2 4 7 3 5 8 9 6
    4 7 2 1 8 5 9 3 6
    

    Sample Output

    7 4 2 8 9 5 6 3 1
    

    Source

    HDU 2007-Spring Programming Contest
    #include <iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int i,n,len;
    int a[1005],b[1005],ans[1005];
    struct
    {
        int num,left,right;
    }tree[1005];
    int findroot(int root,int l,int r)
    {
        for(int i=l;i<=r;i++)
            if (b[i]==a[root]) return i;
    }
    void work(int root,int l,int r)
    {
       if (l>=r) return;
       int k=findroot(root,l,r);
       if (l<=k-1)
       {
            tree[++len].num=a[root+1];
            tree[root].left=len;
            work(root+1,l,k-1);
       }
       if (k+1<=r)
       {
            tree[++len].num=a[root+1+k-l];
            tree[root].right=len;
            work(root+1+k-l,k+1,r);
       }
        return;
    }
    void solve(int k)
    {
        if(tree[k].left!=-1) solve(tree[k].left);
        if(tree[k].right!=-1) solve(tree[k].right);
        ans[++len]=tree[k].num;
    }
    int main()
    {
        while(~scanf("%d",&n))
        {
            for(i=1;i<=n;i++)
                scanf("%d",&a[i]);
            for(i=1;i<=n;i++)
                scanf("%d",&b[i]);
            memset(ans,0,sizeof(ans));
           for(i=1;i<=1000;i++)
           {
               tree[i].num=-1;
               tree[i].left=-1;
               tree[i].right=-1;
           }
            len=1;
            tree[1].num=a[1];
            work(1,1,n);
            len=0;
            solve(1);
            for(i=1;i<n;i++)
                printf("%d ",ans[i]);
            printf("%d\n",ans[n]);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Jmeter+Jenkins持续集成(三、集成到Jenkins)
    Jmeter+Jenkins持续集成(一、环境准备)
    Git----基础常用的命令总结
    -第5章 多级菜单
    -第4章 变幻菜单
    -第3章 jQuery方法实现下拉菜单显示和隐藏
    -第2章 JS方法实现下拉菜单显示和隐藏
    DIV+CSS+PS实现背景图的三层嵌套以及背景图的合并
    -第1章 HTMLCSS方法实现下拉菜单
    前端常用效果-目录
  • 原文地址:https://www.cnblogs.com/stepping/p/5513232.html
Copyright © 2011-2022 走看看