zoukankan      html  css  js  c++  java
  • HDU 1710 Binary Tree Traversals

    Binary Tree Traversals

    Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 42   Accepted Submission(s) : 30

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

    In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

    In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

    In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

    Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

    Input

    The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

    Output

    For each test case print a single line specifying the corresponding postorder sequence.

    Sample Input

    9
    1 2 4 7 3 5 8 9 6
    4 7 2 1 8 5 9 3 6
    

    Sample Output

    7 4 2 8 9 5 6 3 1
    

    Source

    HDU 2007-Spring Programming Contest
    #include <iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int i,n,len;
    int a[1005],b[1005],ans[1005];
    struct
    {
        int num,left,right;
    }tree[1005];
    int findroot(int root,int l,int r)
    {
        for(int i=l;i<=r;i++)
            if (b[i]==a[root]) return i;
    }
    void work(int root,int l,int r)
    {
       if (l>=r) return;
       int k=findroot(root,l,r);
       if (l<=k-1)
       {
            tree[++len].num=a[root+1];
            tree[root].left=len;
            work(root+1,l,k-1);
       }
       if (k+1<=r)
       {
            tree[++len].num=a[root+1+k-l];
            tree[root].right=len;
            work(root+1+k-l,k+1,r);
       }
        return;
    }
    void solve(int k)
    {
        if(tree[k].left!=-1) solve(tree[k].left);
        if(tree[k].right!=-1) solve(tree[k].right);
        ans[++len]=tree[k].num;
    }
    int main()
    {
        while(~scanf("%d",&n))
        {
            for(i=1;i<=n;i++)
                scanf("%d",&a[i]);
            for(i=1;i<=n;i++)
                scanf("%d",&b[i]);
            memset(ans,0,sizeof(ans));
           for(i=1;i<=1000;i++)
           {
               tree[i].num=-1;
               tree[i].left=-1;
               tree[i].right=-1;
           }
            len=1;
            tree[1].num=a[1];
            work(1,1,n);
            len=0;
            solve(1);
            for(i=1;i<n;i++)
                printf("%d ",ans[i]);
            printf("%d\n",ans[n]);
        }
        return 0;
    }
    

      

  • 相关阅读:
    让mysql查询强制走索引
    【转】起始时间和终止时间,循环输出每天
    【转】31个实用的find命令
    Hive数据倾斜解决办法总结
    网站架构之可扩展性
    网站架构之高可用性
    网站架构之可伸缩性
    kafka中的消费组
    MySQL知识点小结
    [数据挖掘]用户画像
  • 原文地址:https://www.cnblogs.com/stepping/p/5513232.html
Copyright © 2011-2022 走看看