The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone. For a plane perpendicular to the axis of the cone, a circle is produced. For a plane that is not perpendicular to the axis and that intersects only a single nappe, the curve produced is either an ellipse or a parabola. The curve produced by a plane intersecting both nappes is a hyperbola.
conic section | equation |
---|---|
circle | x2+y2=a2 |
ellipse | x2/a2+y2/b2=1 |
parabola | y2=4ax |
hyperbola | x2/a2-y2/b2=1 |
Input
There are multiple test cases. The first line of input is an integer T ≈ 10000 indicating the number of test cases.
Each test case consists of a line containing 6 real numbers a, b, c, d, e, f. The absolute value of any number never exceeds 10000. It's guaranteed that a2+c2>0, b=0, the conic section exists and it is non-degenerate.
Output
For each test case, output the type of conic section ax2+bxy+cy2+dx+ey+f=0. See sample for more details.
Sample Input
5 1 0 1 0 0 -1 1 0 2 0 0 -1 0 0 1 1 0 0 1 0 -1 0 0 1 2 0 2 4 4 0
Sample Output
circle ellipse parabola hyperbola circle
References
- Weisstein, Eric W. "Conic Section." From MathWorld--A Wolfram Web Resource.
- http://mathworld.wolfram.com/ConicSection.html
#include <iostream> #include<cstdio> using namespace std; double a,b,c,d,e,f; int t; int main() { scanf("%d",&t); //开始写成while(~scanf("%d",&t)),tle了 for(;t>0;t--) { scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f); //题目没读清楚,题目说是实数,我用了%d,就wa了好几次 if (a==c) printf("circle "); else //判断是什么形状取决于a和c的关系。 if (a!=c && a*c>0) printf("ellipse "); else if (a==0 || c==0) printf("parabola "); else if (a*c<0) printf("hyperbola "); } return 0; }