zoukankan      html  css  js  c++  java
  • HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other)
    Total Submission(s) : 1   Accepted Submission(s) : 0

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can control the elements and combine them to invoke a powerful skill. Vance like Kael very much so he changes the map to make Kael more powerful. 

    In his new map, Kael can control n kind of elements and he can put m elements equal-spacedly on a magic ring and combine them to invoke a new skill. But if a arrangement can change into another by rotate the magic ring or reverse the ring along the axis, they will invoke the same skill. Now give you n and m how many different skill can Kael invoke? As the number maybe too large, just output the answer mod 1000000007.

    Input

    The first line contains a single positive integer T( T <= 500 ), indicates the number of test cases.
    For each test case: give you two positive integers n and m. ( 1 <= n, m <= 10000 )

    Output

    For each test case: output the case number as shown and then output the answer mod 1000000007 in a line. Look sample for more information.

    Sample Input

    2
    3 4
    1 2
    

    Sample Output

    Case #1: 21
    Case #2: 1
    

    Hint

    For Case #1: we assume a,b,c are the 3 kinds of elements.
    Here are the 21 different arrangements to invoke the skills
    / aaaa / aaab / aaac / aabb / aabc / aacc / abab / 
    / abac / abbb / abbc / abcb / abcc / acac / acbc /
    / accc / bbbb / bbbc / bbcc / bcbc / bccc / cccc /

    Source

    2011 Multi-University Training Contest 9 - Host by BJTU

    乘法逆元:http://blog.csdn.net/yukizzz/article/details/51105009

    乘法逆元什么用:

      若对于数字A,C 存在X,使A * X = 1 (mod C) ,那么称X为 A 对C的乘法逆元。

      逆元的作用?让我们来看下面的例子:
      12 / 4 mod 7 = ?  很显然结果是3
      我们现在对于数对 (4,7), 可以知道 X = 2是 4 对7的乘法逆元即2*4=1(mod 7)
      那么我们有(12 / 4) * (4 * 2 ) = (?) * (1) (mod 7)
      除法被完美地转化为了乘法。
     

    1.  用了费马小定理+快速幂 求 乘法逆元

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    
    using namespace std;
    int T;
    const long long mod=1000000007;
    long long res,n,m;
    long long gcd(long long a,long long b)
    {
        return b?gcd(b,a%b):a;
    }
    long long poww(long long a,long long b)
    {
        long long ans=1;
        while(b)
        {
            if (b%2==1) ans=(ans*a)%mod;
            a=(a*a)%mod;
            b/=2;
        }
        return ans;
    }
    int main()
    {
        scanf("%d",&T);
        for(int t=1;t<=T;t++)
        {
            scanf("%lld%lld",&m,&n);
            res=0;
            for(long long i=0;i<n;i++)
              res=(res+poww(m,gcd(n,i)))%mod;
            if(n%2==1)
              res=(res+poww(m,(n+1)/2)*n)%mod;
            else
            {
               res=(res+poww(m,n/2+1)*(n/2))%mod;
               res=(res+poww(m,n/2)*(n/2))%mod;
            }
            printf("Case #%d: ",t);
            printf("%lld
    ",(res*poww(2*n,mod-2))%mod);
        }
        return 0;
    }

     2.用扩展欧几里德求逆元

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    
    using namespace std;
    int T;
    const long long mod=1000000007;
    long long res;
    int m,n;
    
    int gcd(int a,int b)
    {
        return b?gcd(b,a%b):a;
    }
    long long poww(long long a,int b)
    {
        long long ans=1;
        while(b)
        {
            if (b&1) ans=(ans*a)%mod;
            a=(a*a)%mod;
            b/=2;
        }
        return ans;
    }
    
    //返回d=gcd(a,b);和对应于等式ax+by=d中的x,y
    long long extend_gcd(long long a,long long b,long long &x,long long &y)
    {
        if(a==0&&b==0) return -1;//无最大公约数
        if(b==0){x=1;y=0;return a;}
        long long d=extend_gcd(b,a%b,y,x);
        y-=a/b*x;
        return d;
    }
    //*********求逆元素*******************
    //ax = 1(mod n)
    long long mod_reverse(long long a,long long n)
    {
        long long x,y;
        long long d=extend_gcd(a,n,x,y);
        if(d==1) return (x%n+n)%n;
        else return -1;
    }
    
    int main()
    {
        scanf("%d",&T);
        for(int t=1;t<=T;t++)
        {
            scanf("%d%d",&m,&n);
            res=0;
            for(int i=0;i<n;i++)
              res=(res+poww(m,gcd(n,i)))%mod;
            if(n%2==1)
              res=(res+poww(m,(n+1)/2)*n)%mod;
            else
            {
               res=(res+poww(m,n/2+1)*(n/2))%mod;
               res=(res+poww(m,n/2)*(n/2))%mod;
            }
            printf("Case #%d: ",t);
            printf("%I64d
    ",(res*mod_reverse(2*n,mod))%mod);
        }
        return 0;
    }
  • 相关阅读:
    深入理解Http协议
    Http协议详解
    过滤器、监听器、拦截器的区别
    HTTP状态代码集
    理解XML-RPC
    Axis2 解析
    REST SOAP XML-RPC分析比较
    Spring 第一天课程
    Spring 框架学习 有用
    数据库主从复制,读写分离,负载均衡,分表分库的概念 没用
  • 原文地址:https://www.cnblogs.com/stepping/p/7127533.html
Copyright © 2011-2022 走看看