zoukankan      html  css  js  c++  java
  • JDK7集合框架源码阅读(一) ArrayList

    基于版本jdk1.7.0_80

    java.util.ArrayList

    代码如下

    /*
     * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    package java.util;
    
    /**
     * Resizable-array implementation of the <tt>List</tt> interface.  Implements
     * all optional list operations, and permits all elements, including
     * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
     * this class provides methods to manipulate the size of the array that is
     * used internally to store the list.  (This class is roughly equivalent to
     * <tt>Vector</tt>, except that it is unsynchronized.)
     *
     * <p>The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
     * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
     * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
     * that is, adding n elements requires O(n) time.  All of the other operations
     * run in linear time (roughly speaking).  The constant factor is low compared
     * to that for the <tt>LinkedList</tt> implementation.
     *
     * <p>Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
     * the size of the array used to store the elements in the list.  It is always
     * at least as large as the list size.  As elements are added to an ArrayList,
     * its capacity grows automatically.  The details of the growth policy are not
     * specified beyond the fact that adding an element has constant amortized
     * time cost.
     *
     * <p>An application can increase the capacity of an <tt>ArrayList</tt> instance
     * before adding a large number of elements using the <tt>ensureCapacity</tt>
     * operation.  This may reduce the amount of incremental reallocation.
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
     * and at least one of the threads modifies the list structurally, it
     * <i>must</i> be synchronized externally.  (A structural modification is
     * any operation that adds or deletes one or more elements, or explicitly
     * resizes the backing array; merely setting the value of an element is not
     * a structural modification.)  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the list.
     *
     * If no such object exists, the list should be "wrapped" using the
     * {@link Collections#synchronizedList Collections.synchronizedList}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the list:<pre>
     *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
     *
     * <p><a name="fail-fast"/>
     * The iterators returned by this class's {@link #iterator() iterator} and
     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
     * if the list is structurally modified at any time after the iterator is
     * created, in any way except through the iterator's own
     * {@link ListIterator#remove() remove} or
     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
     * {@link ConcurrentModificationException}.  Thus, in the face of
     * concurrent modification, the iterator fails quickly and cleanly, rather
     * than risking arbitrary, non-deterministic behavior at an undetermined
     * time in the future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw {@code ConcurrentModificationException} on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness:  <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @author  Josh Bloch
     * @author  Neal Gafter
     * @see     Collection
     * @see     List
     * @see     LinkedList
     * @see     Vector
     * @since   1.2
     */
    
    public class ArrayList<E> extends AbstractList<E>
            implements List<E>, RandomAccess, Cloneable, java.io.Serializable
    {
        private static final long serialVersionUID = 8683452581122892189L;
    
        /**
         * Default initial capacity.
         */
        private static final int DEFAULT_CAPACITY = 10;
    
        /**
         * Shared empty array instance used for empty instances.
         */
        private static final Object[] EMPTY_ELEMENTDATA = {};
    
        /**
         * The array buffer into which the elements of the ArrayList are stored.
         * The capacity of the ArrayList is the length of this array buffer. Any
         * empty ArrayList with elementData == EMPTY_ELEMENTDATA will be expanded to
         * DEFAULT_CAPACITY when the first element is added.
         */
        private transient Object[] elementData;
    
        /**
         * The size of the ArrayList (the number of elements it contains).
         *
         * @serial
         */
        private int size;
    
        /**
         * Constructs an empty list with the specified initial capacity.
         *
         * @param  initialCapacity  the initial capacity of the list
         * @throws IllegalArgumentException if the specified initial capacity
         *         is negative
         */
        public ArrayList(int initialCapacity) {
            super();
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
            this.elementData = new Object[initialCapacity];
        }
    
        /**
         * Constructs an empty list with an initial capacity of ten.
         */
        public ArrayList() {
            super();
            this.elementData = EMPTY_ELEMENTDATA;
        }
    
        /**
         * Constructs a list containing the elements of the specified
         * collection, in the order they are returned by the collection's
         * iterator.
         *
         * @param c the collection whose elements are to be placed into this list
         * @throws NullPointerException if the specified collection is null
         */
        public ArrayList(Collection<? extends E> c) {
            elementData = c.toArray();
            size = elementData.length;
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        }
    
        /**
         * Trims the capacity of this <tt>ArrayList</tt> instance to be the
         * list's current size.  An application can use this operation to minimize
         * the storage of an <tt>ArrayList</tt> instance.
         */
        public void trimToSize() {
            modCount++;
            if (size < elementData.length) {
                elementData = Arrays.copyOf(elementData, size);
            }
        }
    
        /**
         * Increases the capacity of this <tt>ArrayList</tt> instance, if
         * necessary, to ensure that it can hold at least the number of elements
         * specified by the minimum capacity argument.
         *
         * @param   minCapacity   the desired minimum capacity
         */
        public void ensureCapacity(int minCapacity) {
            int minExpand = (elementData != EMPTY_ELEMENTDATA)
                // any size if real element table
                ? 0
                // larger than default for empty table. It's already supposed to be
                // at default size.
                : DEFAULT_CAPACITY;
    
            if (minCapacity > minExpand) {
                ensureExplicitCapacity(minCapacity);
            }
        }
    
        private void ensureCapacityInternal(int minCapacity) {
            if (elementData == EMPTY_ELEMENTDATA) {
                minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
            }
    
            ensureExplicitCapacity(minCapacity);
        }
    
        private void ensureExplicitCapacity(int minCapacity) {
            modCount++;
    
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);
        }
    
        /**
         * The maximum size of array to allocate.
         * Some VMs reserve some header words in an array.
         * Attempts to allocate larger arrays may result in
         * OutOfMemoryError: Requested array size exceeds VM limit
         */
        private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
        /**
         * Increases the capacity to ensure that it can hold at least the
         * number of elements specified by the minimum capacity argument.
         *
         * @param minCapacity the desired minimum capacity
         */
        private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1);
            if (newCapacity - minCapacity < 0)
                newCapacity = minCapacity;
            if (newCapacity - MAX_ARRAY_SIZE > 0)
                newCapacity = hugeCapacity(minCapacity);
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
    
        private static int hugeCapacity(int minCapacity) {
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
        }
    
        /**
         * Returns the number of elements in this list.
         *
         * @return the number of elements in this list
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this list contains no elements.
         *
         * @return <tt>true</tt> if this list contains no elements
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns <tt>true</tt> if this list contains the specified element.
         * More formally, returns <tt>true</tt> if and only if this list contains
         * at least one element <tt>e</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
         *
         * @param o element whose presence in this list is to be tested
         * @return <tt>true</tt> if this list contains the specified element
         */
        public boolean contains(Object o) {
            return indexOf(o) >= 0;
        }
    
        /**
         * Returns the index of the first occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the lowest index <tt>i</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int indexOf(Object o) {
            if (o == null) {
                for (int i = 0; i < size; i++)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = 0; i < size; i++)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
    
        /**
         * Returns the index of the last occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the highest index <tt>i</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int lastIndexOf(Object o) {
            if (o == null) {
                for (int i = size-1; i >= 0; i--)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = size-1; i >= 0; i--)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
    
        /**
         * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
         * elements themselves are not copied.)
         *
         * @return a clone of this <tt>ArrayList</tt> instance
         */
        public Object clone() {
            try {
                @SuppressWarnings("unchecked")
                    ArrayList<E> v = (ArrayList<E>) super.clone();
                v.elementData = Arrays.copyOf(elementData, size);
                v.modCount = 0;
                return v;
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError();
            }
        }
    
        /**
         * Returns an array containing all of the elements in this list
         * in proper sequence (from first to last element).
         *
         * <p>The returned array will be "safe" in that no references to it are
         * maintained by this list.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         *
         * <p>This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this list in
         *         proper sequence
         */
        public Object[] toArray() {
            return Arrays.copyOf(elementData, size);
        }
    
        /**
         * Returns an array containing all of the elements in this list in proper
         * sequence (from first to last element); the runtime type of the returned
         * array is that of the specified array.  If the list fits in the
         * specified array, it is returned therein.  Otherwise, a new array is
         * allocated with the runtime type of the specified array and the size of
         * this list.
         *
         * <p>If the list fits in the specified array with room to spare
         * (i.e., the array has more elements than the list), the element in
         * the array immediately following the end of the collection is set to
         * <tt>null</tt>.  (This is useful in determining the length of the
         * list <i>only</i> if the caller knows that the list does not contain
         * any null elements.)
         *
         * @param a the array into which the elements of the list are to
         *          be stored, if it is big enough; otherwise, a new array of the
         *          same runtime type is allocated for this purpose.
         * @return an array containing the elements of the list
         * @throws ArrayStoreException if the runtime type of the specified array
         *         is not a supertype of the runtime type of every element in
         *         this list
         * @throws NullPointerException if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            if (a.length < size)
                // Make a new array of a's runtime type, but my contents:
                return (T[]) Arrays.copyOf(elementData, size, a.getClass());
            System.arraycopy(elementData, 0, a, 0, size);
            if (a.length > size)
                a[size] = null;
            return a;
        }
    
        // Positional Access Operations
    
        @SuppressWarnings("unchecked")
        E elementData(int index) {
            return (E) elementData[index];
        }
    
        /**
         * Returns the element at the specified position in this list.
         *
         * @param  index index of the element to return
         * @return the element at the specified position in this list
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E get(int index) {
            rangeCheck(index);
    
            return elementData(index);
        }
    
        /**
         * Replaces the element at the specified position in this list with
         * the specified element.
         *
         * @param index index of the element to replace
         * @param element element to be stored at the specified position
         * @return the element previously at the specified position
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E set(int index, E element) {
            rangeCheck(index);
    
            E oldValue = elementData(index);
            elementData[index] = element;
            return oldValue;
        }
    
        /**
         * Appends the specified element to the end of this list.
         *
         * @param e element to be appended to this list
         * @return <tt>true</tt> (as specified by {@link Collection#add})
         */
        public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            elementData[size++] = e;
            return true;
        }
    
        /**
         * Inserts the specified element at the specified position in this
         * list. Shifts the element currently at that position (if any) and
         * any subsequent elements to the right (adds one to their indices).
         *
         * @param index index at which the specified element is to be inserted
         * @param element element to be inserted
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public void add(int index, E element) {
            rangeCheckForAdd(index);
    
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            System.arraycopy(elementData, index, elementData, index + 1,
                             size - index);
            elementData[index] = element;
            size++;
        }
    
        /**
         * Removes the element at the specified position in this list.
         * Shifts any subsequent elements to the left (subtracts one from their
         * indices).
         *
         * @param index the index of the element to be removed
         * @return the element that was removed from the list
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E remove(int index) {
            rangeCheck(index);
    
            modCount++;
            E oldValue = elementData(index);
    
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
    
            return oldValue;
        }
    
        /**
         * Removes the first occurrence of the specified element from this list,
         * if it is present.  If the list does not contain the element, it is
         * unchanged.  More formally, removes the element with the lowest index
         * <tt>i</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
         * (if such an element exists).  Returns <tt>true</tt> if this list
         * contained the specified element (or equivalently, if this list
         * changed as a result of the call).
         *
         * @param o element to be removed from this list, if present
         * @return <tt>true</tt> if this list contained the specified element
         */
        public boolean remove(Object o) {
            if (o == null) {
                for (int index = 0; index < size; index++)
                    if (elementData[index] == null) {
                        fastRemove(index);
                        return true;
                    }
            } else {
                for (int index = 0; index < size; index++)
                    if (o.equals(elementData[index])) {
                        fastRemove(index);
                        return true;
                    }
            }
            return false;
        }
    
        /*
         * Private remove method that skips bounds checking and does not
         * return the value removed.
         */
        private void fastRemove(int index) {
            modCount++;
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
        }
    
        /**
         * Removes all of the elements from this list.  The list will
         * be empty after this call returns.
         */
        public void clear() {
            modCount++;
    
            // clear to let GC do its work
            for (int i = 0; i < size; i++)
                elementData[i] = null;
    
            size = 0;
        }
    
        /**
         * Appends all of the elements in the specified collection to the end of
         * this list, in the order that they are returned by the
         * specified collection's Iterator.  The behavior of this operation is
         * undefined if the specified collection is modified while the operation
         * is in progress.  (This implies that the behavior of this call is
         * undefined if the specified collection is this list, and this
         * list is nonempty.)
         *
         * @param c collection containing elements to be added to this list
         * @return <tt>true</tt> if this list changed as a result of the call
         * @throws NullPointerException if the specified collection is null
         */
        public boolean addAll(Collection<? extends E> c) {
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
            System.arraycopy(a, 0, elementData, size, numNew);
            size += numNew;
            return numNew != 0;
        }
    
        /**
         * Inserts all of the elements in the specified collection into this
         * list, starting at the specified position.  Shifts the element
         * currently at that position (if any) and any subsequent elements to
         * the right (increases their indices).  The new elements will appear
         * in the list in the order that they are returned by the
         * specified collection's iterator.
         *
         * @param index index at which to insert the first element from the
         *              specified collection
         * @param c collection containing elements to be added to this list
         * @return <tt>true</tt> if this list changed as a result of the call
         * @throws IndexOutOfBoundsException {@inheritDoc}
         * @throws NullPointerException if the specified collection is null
         */
        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
    
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
    
            int numMoved = size - index;
            if (numMoved > 0)
                System.arraycopy(elementData, index, elementData, index + numNew,
                                 numMoved);
    
            System.arraycopy(a, 0, elementData, index, numNew);
            size += numNew;
            return numNew != 0;
        }
    
        /**
         * Removes from this list all of the elements whose index is between
         * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
         * Shifts any succeeding elements to the left (reduces their index).
         * This call shortens the list by {@code (toIndex - fromIndex)} elements.
         * (If {@code toIndex==fromIndex}, this operation has no effect.)
         *
         * @throws IndexOutOfBoundsException if {@code fromIndex} or
         *         {@code toIndex} is out of range
         *         ({@code fromIndex < 0 ||
         *          fromIndex >= size() ||
         *          toIndex > size() ||
         *          toIndex < fromIndex})
         */
        protected void removeRange(int fromIndex, int toIndex) {
            modCount++;
            int numMoved = size - toIndex;
            System.arraycopy(elementData, toIndex, elementData, fromIndex,
                             numMoved);
    
            // clear to let GC do its work
            int newSize = size - (toIndex-fromIndex);
            for (int i = newSize; i < size; i++) {
                elementData[i] = null;
            }
            size = newSize;
        }
    
        /**
         * Checks if the given index is in range.  If not, throws an appropriate
         * runtime exception.  This method does *not* check if the index is
         * negative: It is always used immediately prior to an array access,
         * which throws an ArrayIndexOutOfBoundsException if index is negative.
         */
        private void rangeCheck(int index) {
            if (index >= size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * A version of rangeCheck used by add and addAll.
         */
        private void rangeCheckForAdd(int index) {
            if (index > size || index < 0)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * Constructs an IndexOutOfBoundsException detail message.
         * Of the many possible refactorings of the error handling code,
         * this "outlining" performs best with both server and client VMs.
         */
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
    
        /**
         * Removes from this list all of its elements that are contained in the
         * specified collection.
         *
         * @param c collection containing elements to be removed from this list
         * @return {@code true} if this list changed as a result of the call
         * @throws ClassCastException if the class of an element of this list
         *         is incompatible with the specified collection
         * (<a href="Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if this list contains a null element and the
         *         specified collection does not permit null elements
         * (<a href="Collection.html#optional-restrictions">optional</a>),
         *         or if the specified collection is null
         * @see Collection#contains(Object)
         */
        public boolean removeAll(Collection<?> c) {
            return batchRemove(c, false);
        }
    
        /**
         * Retains only the elements in this list that are contained in the
         * specified collection.  In other words, removes from this list all
         * of its elements that are not contained in the specified collection.
         *
         * @param c collection containing elements to be retained in this list
         * @return {@code true} if this list changed as a result of the call
         * @throws ClassCastException if the class of an element of this list
         *         is incompatible with the specified collection
         * (<a href="Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if this list contains a null element and the
         *         specified collection does not permit null elements
         * (<a href="Collection.html#optional-restrictions">optional</a>),
         *         or if the specified collection is null
         * @see Collection#contains(Object)
         */
        public boolean retainAll(Collection<?> c) {
            return batchRemove(c, true);
        }
    
        private boolean batchRemove(Collection<?> c, boolean complement) {
            final Object[] elementData = this.elementData;
            int r = 0, w = 0;
            boolean modified = false;
            try {
                for (; r < size; r++)
                    if (c.contains(elementData[r]) == complement)
                        elementData[w++] = elementData[r];
            } finally {
                // Preserve behavioral compatibility with AbstractCollection,
                // even if c.contains() throws.
                if (r != size) {
                    System.arraycopy(elementData, r,
                                     elementData, w,
                                     size - r);
                    w += size - r;
                }
                if (w != size) {
                    // clear to let GC do its work
                    for (int i = w; i < size; i++)
                        elementData[i] = null;
                    modCount += size - w;
                    size = w;
                    modified = true;
                }
            }
            return modified;
        }
    
        /**
         * Save the state of the <tt>ArrayList</tt> instance to a stream (that
         * is, serialize it).
         *
         * @serialData The length of the array backing the <tt>ArrayList</tt>
         *             instance is emitted (int), followed by all of its elements
         *             (each an <tt>Object</tt>) in the proper order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
            // Write out element count, and any hidden stuff
            int expectedModCount = modCount;
            s.defaultWriteObject();
    
            // Write out size as capacity for behavioural compatibility with clone()
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (int i=0; i<size; i++) {
                s.writeObject(elementData[i]);
            }
    
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
        /**
         * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            elementData = EMPTY_ELEMENTDATA;
    
            // Read in size, and any hidden stuff
            s.defaultReadObject();
    
            // Read in capacity
            s.readInt(); // ignored
    
            if (size > 0) {
                // be like clone(), allocate array based upon size not capacity
                ensureCapacityInternal(size);
    
                Object[] a = elementData;
                // Read in all elements in the proper order.
                for (int i=0; i<size; i++) {
                    a[i] = s.readObject();
                }
            }
        }
    
        /**
         * Returns a list iterator over the elements in this list (in proper
         * sequence), starting at the specified position in the list.
         * The specified index indicates the first element that would be
         * returned by an initial call to {@link ListIterator#next next}.
         * An initial call to {@link ListIterator#previous previous} would
         * return the element with the specified index minus one.
         *
         * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public ListIterator<E> listIterator(int index) {
            if (index < 0 || index > size)
                throw new IndexOutOfBoundsException("Index: "+index);
            return new ListItr(index);
        }
    
        /**
         * Returns a list iterator over the elements in this list (in proper
         * sequence).
         *
         * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @see #listIterator(int)
         */
        public ListIterator<E> listIterator() {
            return new ListItr(0);
        }
    
        /**
         * Returns an iterator over the elements in this list in proper sequence.
         *
         * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @return an iterator over the elements in this list in proper sequence
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        /**
         * An optimized version of AbstractList.Itr
         */
        private class Itr implements Iterator<E> {
            int cursor;       // index of next element to return
            int lastRet = -1; // index of last element returned; -1 if no such
            int expectedModCount = modCount;
    
            public boolean hasNext() {
                return cursor != size;
            }
    
            @SuppressWarnings("unchecked")
            public E next() {
                checkForComodification();
                int i = cursor;
                if (i >= size)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i + 1;
                return (E) elementData[lastRet = i];
            }
    
            public void remove() {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.remove(lastRet);
                    cursor = lastRet;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    
        /**
         * An optimized version of AbstractList.ListItr
         */
        private class ListItr extends Itr implements ListIterator<E> {
            ListItr(int index) {
                super();
                cursor = index;
            }
    
            public boolean hasPrevious() {
                return cursor != 0;
            }
    
            public int nextIndex() {
                return cursor;
            }
    
            public int previousIndex() {
                return cursor - 1;
            }
    
            @SuppressWarnings("unchecked")
            public E previous() {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i;
                return (E) elementData[lastRet = i];
            }
    
            public void set(E e) {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.set(lastRet, e);
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            public void add(E e) {
                checkForComodification();
    
                try {
                    int i = cursor;
                    ArrayList.this.add(i, e);
                    cursor = i + 1;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a view of the portion of this list between the specified
         * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
         * {@code fromIndex} and {@code toIndex} are equal, the returned list is
         * empty.)  The returned list is backed by this list, so non-structural
         * changes in the returned list are reflected in this list, and vice-versa.
         * The returned list supports all of the optional list operations.
         *
         * <p>This method eliminates the need for explicit range operations (of
         * the sort that commonly exist for arrays).  Any operation that expects
         * a list can be used as a range operation by passing a subList view
         * instead of a whole list.  For example, the following idiom
         * removes a range of elements from a list:
         * <pre>
         *      list.subList(from, to).clear();
         * </pre>
         * Similar idioms may be constructed for {@link #indexOf(Object)} and
         * {@link #lastIndexOf(Object)}, and all of the algorithms in the
         * {@link Collections} class can be applied to a subList.
         *
         * <p>The semantics of the list returned by this method become undefined if
         * the backing list (i.e., this list) is <i>structurally modified</i> in
         * any way other than via the returned list.  (Structural modifications are
         * those that change the size of this list, or otherwise perturb it in such
         * a fashion that iterations in progress may yield incorrect results.)
         *
         * @throws IndexOutOfBoundsException {@inheritDoc}
         * @throws IllegalArgumentException {@inheritDoc}
         */
        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, 0, fromIndex, toIndex);
        }
    
        static void subListRangeCheck(int fromIndex, int toIndex, int size) {
            if (fromIndex < 0)
                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
            if (toIndex > size)
                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
            if (fromIndex > toIndex)
                throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                                   ") > toIndex(" + toIndex + ")");
        }
    
        private class SubList extends AbstractList<E> implements RandomAccess {
            private final AbstractList<E> parent;
            private final int parentOffset;
            private final int offset;
            int size;
    
            SubList(AbstractList<E> parent,
                    int offset, int fromIndex, int toIndex) {
                this.parent = parent;
                this.parentOffset = fromIndex;
                this.offset = offset + fromIndex;
                this.size = toIndex - fromIndex;
                this.modCount = ArrayList.this.modCount;
            }
    
            public E set(int index, E e) {
                rangeCheck(index);
                checkForComodification();
                E oldValue = ArrayList.this.elementData(offset + index);
                ArrayList.this.elementData[offset + index] = e;
                return oldValue;
            }
    
            public E get(int index) {
                rangeCheck(index);
                checkForComodification();
                return ArrayList.this.elementData(offset + index);
            }
    
            public int size() {
                checkForComodification();
                return this.size;
            }
    
            public void add(int index, E e) {
                rangeCheckForAdd(index);
                checkForComodification();
                parent.add(parentOffset + index, e);
                this.modCount = parent.modCount;
                this.size++;
            }
    
            public E remove(int index) {
                rangeCheck(index);
                checkForComodification();
                E result = parent.remove(parentOffset + index);
                this.modCount = parent.modCount;
                this.size--;
                return result;
            }
    
            protected void removeRange(int fromIndex, int toIndex) {
                checkForComodification();
                parent.removeRange(parentOffset + fromIndex,
                                   parentOffset + toIndex);
                this.modCount = parent.modCount;
                this.size -= toIndex - fromIndex;
            }
    
            public boolean addAll(Collection<? extends E> c) {
                return addAll(this.size, c);
            }
    
            public boolean addAll(int index, Collection<? extends E> c) {
                rangeCheckForAdd(index);
                int cSize = c.size();
                if (cSize==0)
                    return false;
    
                checkForComodification();
                parent.addAll(parentOffset + index, c);
                this.modCount = parent.modCount;
                this.size += cSize;
                return true;
            }
    
            public Iterator<E> iterator() {
                return listIterator();
            }
    
            public ListIterator<E> listIterator(final int index) {
                checkForComodification();
                rangeCheckForAdd(index);
                final int offset = this.offset;
    
                return new ListIterator<E>() {
                    int cursor = index;
                    int lastRet = -1;
                    int expectedModCount = ArrayList.this.modCount;
    
                    public boolean hasNext() {
                        return cursor != SubList.this.size;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E next() {
                        checkForComodification();
                        int i = cursor;
                        if (i >= SubList.this.size)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i + 1;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    public boolean hasPrevious() {
                        return cursor != 0;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E previous() {
                        checkForComodification();
                        int i = cursor - 1;
                        if (i < 0)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    public int nextIndex() {
                        return cursor;
                    }
    
                    public int previousIndex() {
                        return cursor - 1;
                    }
    
                    public void remove() {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            SubList.this.remove(lastRet);
                            cursor = lastRet;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void set(E e) {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            ArrayList.this.set(offset + lastRet, e);
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void add(E e) {
                        checkForComodification();
    
                        try {
                            int i = cursor;
                            SubList.this.add(i, e);
                            cursor = i + 1;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    final void checkForComodification() {
                        if (expectedModCount != ArrayList.this.modCount)
                            throw new ConcurrentModificationException();
                    }
                };
            }
    
            public List<E> subList(int fromIndex, int toIndex) {
                subListRangeCheck(fromIndex, toIndex, size);
                return new SubList(this, offset, fromIndex, toIndex);
            }
    
            private void rangeCheck(int index) {
                if (index < 0 || index >= this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private void rangeCheckForAdd(int index) {
                if (index < 0 || index > this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private String outOfBoundsMsg(int index) {
                return "Index: "+index+", Size: "+this.size;
            }
    
            private void checkForComodification() {
                if (ArrayList.this.modCount != this.modCount)
                    throw new ConcurrentModificationException();
            }
        }
    }
    View Code

     代码一千行多一点,而且并不难懂,我只分析要点

    1. 接口分析

    ArrayList继承于AbstractList抽象类

    List,RandomAccess(说明ArrayList支持随机访问),Cloneable,java.io.Serializable接口

    2. 扩容

    核心思路是用一个Object数组elementData来存放元素,用size变量来记录数据的大小

    当数组长度不够用的时候,调用grow函数扩容,扩容方式不是简单的翻倍,而是变成原来的1.5倍,关键代码如下,不知道为什么要这样设计

    int newCapacity = oldCapacity + (oldCapacity >> 1);

    默认初始长度为10,所以最好能在定义list的时候,就设置好初始长度,否则多次扩容还是会带来一些性能问题的。

    3. ConcurrentModificationException

    还有一个比较有意思的设计是AbstractList中的modCount变量

    每次对ArrayList进行修改操作(add/remove这样,get不算),它都会将父类AbstractList中的modCount这个变量自加一次

    所以modCount这个变量的意思就是modification count了,表示这个list从new出来到现在,一共经历了多少次modification

    如果我们需要遍历某个List,最简单的想法就是去拿这个list的迭代器,然后一路next就行了

    但是在调用ArrayList的iterator方法创建迭代器时,迭代器初始化时,会用一个expectedModCount变量会记录下这个ArrayList当前的modCount

    然后每次调用迭代器的方法时,都会去比对一下迭代器里的expectedModCount是否等于关联的ArrayList的modCount,如果不等,就抛出一个ConcurrentModificationException

    设计目的是,ArrayList与它的迭代器都不是线程安全的,ArrayList的迭代器只能在ArrayList不被修改的情况下才能使用,如果获取迭代器后,ArrayList又被修改(无需并发修改,在同一个线程内修改也行),那么迭代器可能会指向一个异常的位置(位置串了一两位都算是好的,如果ArrayList压缩了,可能会引起数组越界的问题)。从简便的角度来看,直接禁止使用这个迭代器是最容易的。

    与之相对的就是concurrent包里的CopyOnWriteArrayList,它的迭代器就不会报ConcurrentModificationException

  • 相关阅读:
    [LeetCode] Repeated DNA Sequences hash map
    [LeetCode] Largest Number 排序
    [LeetCode] Convert Sorted Array to Binary Search Tree
    [LeetCode] Populating Next Right Pointers in Each Node 深度搜索
    [LeetCode] Binary Search Tree Iterator 深度搜索
    [LeetCode] Best Time to Buy and Sell Stock II 贪心算法
    [LeetCode] Find Peak Element 二分搜索
    [LeetCode] 3Sum Closest
    [LeetCode] Gas Station 贪心
    [LeetCode] Number of 1 Bits 位操作
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7120483.html
Copyright © 2011-2022 走看看