zoukankan      html  css  js  c++  java
  • JDK7集合框架源码阅读(三) HashMap

    基于版本jdk1.7.0_80

    java.util.HashMap

    代码如下

    /*
     * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    package java.util;
    import java.io.*;
    
    /**
     * Hash table based implementation of the <tt>Map</tt> interface.  This
     * implementation provides all of the optional map operations, and permits
     * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
     * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
     * unsynchronized and permits nulls.)  This class makes no guarantees as to
     * the order of the map; in particular, it does not guarantee that the order
     * will remain constant over time.
     *
     * <p>This implementation provides constant-time performance for the basic
     * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     * disperses the elements properly among the buckets.  Iteration over
     * collection views requires time proportional to the "capacity" of the
     * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     * of key-value mappings).  Thus, it's very important not to set the initial
     * capacity too high (or the load factor too low) if iteration performance is
     * important.
     *
     * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
     * performance: <i>initial capacity</i> and <i>load factor</i>.  The
     * <i>capacity</i> is the number of buckets in the hash table, and the initial
     * capacity is simply the capacity at the time the hash table is created.  The
     * <i>load factor</i> is a measure of how full the hash table is allowed to
     * get before its capacity is automatically increased.  When the number of
     * entries in the hash table exceeds the product of the load factor and the
     * current capacity, the hash table is <i>rehashed</i> (that is, internal data
     * structures are rebuilt) so that the hash table has approximately twice the
     * number of buckets.
     *
     * <p>As a general rule, the default load factor (.75) offers a good tradeoff
     * between time and space costs.  Higher values decrease the space overhead
     * but increase the lookup cost (reflected in most of the operations of the
     * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The
     * expected number of entries in the map and its load factor should be taken
     * into account when setting its initial capacity, so as to minimize the
     * number of rehash operations.  If the initial capacity is greater
     * than the maximum number of entries divided by the load factor, no
     * rehash operations will ever occur.
     *
     * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
     * creating it with a sufficiently large capacity will allow the mappings to
     * be stored more efficiently than letting it perform automatic rehashing as
     * needed to grow the table.
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access a hash map concurrently, and at least one of
     * the threads modifies the map structurally, it <i>must</i> be
     * synchronized externally.  (A structural modification is any operation
     * that adds or deletes one or more mappings; merely changing the value
     * associated with a key that an instance already contains is not a
     * structural modification.)  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the map.
     *
     * If no such object exists, the map should be "wrapped" using the
     * {@link Collections#synchronizedMap Collections.synchronizedMap}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the map:<pre>
     *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
     *
     * <p>The iterators returned by all of this class's "collection view methods"
     * are <i>fail-fast</i>: if the map is structurally modified at any time after
     * the iterator is created, in any way except through the iterator's own
     * <tt>remove</tt> method, the iterator will throw a
     * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the
     * future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness: <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @param <K> the type of keys maintained by this map
     * @param <V> the type of mapped values
     *
     * @author  Doug Lea
     * @author  Josh Bloch
     * @author  Arthur van Hoff
     * @author  Neal Gafter
     * @see     Object#hashCode()
     * @see     Collection
     * @see     Map
     * @see     TreeMap
     * @see     Hashtable
     * @since   1.2
     */
    
    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    {
    
        /**
         * The default initial capacity - MUST be a power of two.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * An empty table instance to share when the table is not inflated.
         */
        static final Entry<?,?>[] EMPTY_TABLE = {};
    
        /**
         * The table, resized as necessary. Length MUST Always be a power of two.
         */
        transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
    
        /**
         * The number of key-value mappings contained in this map.
         */
        transient int size;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         * @serial
         */
        // If table == EMPTY_TABLE then this is the initial capacity at which the
        // table will be created when inflated.
        int threshold;
    
        /**
         * The load factor for the hash table.
         *
         * @serial
         */
        final float loadFactor;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         */
        transient int modCount;
    
        /**
         * The default threshold of map capacity above which alternative hashing is
         * used for String keys. Alternative hashing reduces the incidence of
         * collisions due to weak hash code calculation for String keys.
         * <p/>
         * This value may be overridden by defining the system property
         * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
         * forces alternative hashing to be used at all times whereas
         * {@code -1} value ensures that alternative hashing is never used.
         */
        static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
    
        /**
         * holds values which can't be initialized until after VM is booted.
         */
        private static class Holder {
    
            /**
             * Table capacity above which to switch to use alternative hashing.
             */
            static final int ALTERNATIVE_HASHING_THRESHOLD;
    
            static {
                String altThreshold = java.security.AccessController.doPrivileged(
                    new sun.security.action.GetPropertyAction(
                        "jdk.map.althashing.threshold"));
    
                int threshold;
                try {
                    threshold = (null != altThreshold)
                            ? Integer.parseInt(altThreshold)
                            : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
    
                    // disable alternative hashing if -1
                    if (threshold == -1) {
                        threshold = Integer.MAX_VALUE;
                    }
    
                    if (threshold < 0) {
                        throw new IllegalArgumentException("value must be positive integer.");
                    }
                } catch(IllegalArgumentException failed) {
                    throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
                }
    
                ALTERNATIVE_HASHING_THRESHOLD = threshold;
            }
        }
    
        /**
         * A randomizing value associated with this instance that is applied to
         * hash code of keys to make hash collisions harder to find. If 0 then
         * alternative hashing is disabled.
         */
        transient int hashSeed = 0;
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
    
            this.loadFactor = loadFactor;
            threshold = initialCapacity;
            init();
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            inflateTable(threshold);
    
            putAllForCreate(m);
        }
    
        private static int roundUpToPowerOf2(int number) {
            // assert number >= 0 : "number must be non-negative";
            return number >= MAXIMUM_CAPACITY
                    ? MAXIMUM_CAPACITY
                    : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
        }
    
        /**
         * Inflates the table.
         */
        private void inflateTable(int toSize) {
            // Find a power of 2 >= toSize
            int capacity = roundUpToPowerOf2(toSize);
    
            threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
            table = new Entry[capacity];
            initHashSeedAsNeeded(capacity);
        }
    
        // internal utilities
    
        /**
         * Initialization hook for subclasses. This method is called
         * in all constructors and pseudo-constructors (clone, readObject)
         * after HashMap has been initialized but before any entries have
         * been inserted.  (In the absence of this method, readObject would
         * require explicit knowledge of subclasses.)
         */
        void init() {
        }
    
        /**
         * Initialize the hashing mask value. We defer initialization until we
         * really need it.
         */
        final boolean initHashSeedAsNeeded(int capacity) {
            boolean currentAltHashing = hashSeed != 0;
            boolean useAltHashing = sun.misc.VM.isBooted() &&
                    (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
            boolean switching = currentAltHashing ^ useAltHashing;
            if (switching) {
                hashSeed = useAltHashing
                    ? sun.misc.Hashing.randomHashSeed(this)
                    : 0;
            }
            return switching;
        }
    
        /**
         * Retrieve object hash code and applies a supplemental hash function to the
         * result hash, which defends against poor quality hash functions.  This is
         * critical because HashMap uses power-of-two length hash tables, that
         * otherwise encounter collisions for hashCodes that do not differ
         * in lower bits. Note: Null keys always map to hash 0, thus index 0.
         */
        final int hash(Object k) {
            int h = hashSeed;
            if (0 != h && k instanceof String) {
                return sun.misc.Hashing.stringHash32((String) k);
            }
    
            h ^= k.hashCode();
    
            // This function ensures that hashCodes that differ only by
            // constant multiples at each bit position have a bounded
            // number of collisions (approximately 8 at default load factor).
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
        }
    
        /**
         * Returns index for hash code h.
         */
        static int indexFor(int h, int length) {
            // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
            return h & (length-1);
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            if (key == null)
                return getForNullKey();
            Entry<K,V> entry = getEntry(key);
    
            return null == entry ? null : entry.getValue();
        }
    
        /**
         * Offloaded version of get() to look up null keys.  Null keys map
         * to index 0.  This null case is split out into separate methods
         * for the sake of performance in the two most commonly used
         * operations (get and put), but incorporated with conditionals in
         * others.
         */
        private V getForNullKey() {
            if (size == 0) {
                return null;
            }
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null)
                    return e.value;
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param   key   The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         */
        public boolean containsKey(Object key) {
            return getEntry(key) != null;
        }
    
        /**
         * Returns the entry associated with the specified key in the
         * HashMap.  Returns null if the HashMap contains no mapping
         * for the key.
         */
        final Entry<K,V> getEntry(Object key) {
            if (size == 0) {
                return null;
            }
    
            int hash = (key == null) ? 0 : hash(key);
            for (Entry<K,V> e = table[indexFor(hash, table.length)];
                 e != null;
                 e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            }
            return null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            if (table == EMPTY_TABLE) {
                inflateTable(threshold);
            }
            if (key == null)
                return putForNullKey(value);
            int hash = hash(key);
            int i = indexFor(hash, table.length);
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
    
            modCount++;
            addEntry(hash, key, value, i);
            return null;
        }
    
        /**
         * Offloaded version of put for null keys
         */
        private V putForNullKey(V value) {
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            modCount++;
            addEntry(0, null, value, 0);
            return null;
        }
    
        /**
         * This method is used instead of put by constructors and
         * pseudoconstructors (clone, readObject).  It does not resize the table,
         * check for comodification, etc.  It calls createEntry rather than
         * addEntry.
         */
        private void putForCreate(K key, V value) {
            int hash = null == key ? 0 : hash(key);
            int i = indexFor(hash, table.length);
    
            /**
             * Look for preexisting entry for key.  This will never happen for
             * clone or deserialize.  It will only happen for construction if the
             * input Map is a sorted map whose ordering is inconsistent w/ equals.
             */
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    e.value = value;
                    return;
                }
            }
    
            createEntry(hash, key, value, i);
        }
    
        private void putAllForCreate(Map<? extends K, ? extends V> m) {
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                putForCreate(e.getKey(), e.getValue());
        }
    
        /**
         * Rehashes the contents of this map into a new array with a
         * larger capacity.  This method is called automatically when the
         * number of keys in this map reaches its threshold.
         *
         * If current capacity is MAXIMUM_CAPACITY, this method does not
         * resize the map, but sets threshold to Integer.MAX_VALUE.
         * This has the effect of preventing future calls.
         *
         * @param newCapacity the new capacity, MUST be a power of two;
         *        must be greater than current capacity unless current
         *        capacity is MAXIMUM_CAPACITY (in which case value
         *        is irrelevant).
         */
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
    
            Entry[] newTable = new Entry[newCapacity];
            transfer(newTable, initHashSeedAsNeeded(newCapacity));
            table = newTable;
            threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
        }
    
        /**
         * Transfers all entries from current table to newTable.
         */
        void transfer(Entry[] newTable, boolean rehash) {
            int newCapacity = newTable.length;
            for (Entry<K,V> e : table) {
                while(null != e) {
                    Entry<K,V> next = e.next;
                    if (rehash) {
                        e.hash = null == e.key ? 0 : hash(e.key);
                    }
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                }
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         *
         * @param m mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            int numKeysToBeAdded = m.size();
            if (numKeysToBeAdded == 0)
                return;
    
            if (table == EMPTY_TABLE) {
                inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
            }
    
            /*
             * Expand the map if the map if the number of mappings to be added
             * is greater than or equal to threshold.  This is conservative; the
             * obvious condition is (m.size() + size) >= threshold, but this
             * condition could result in a map with twice the appropriate capacity,
             * if the keys to be added overlap with the keys already in this map.
             * By using the conservative calculation, we subject ourself
             * to at most one extra resize.
             */
            if (numKeysToBeAdded > threshold) {
                int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
                if (targetCapacity > MAXIMUM_CAPACITY)
                    targetCapacity = MAXIMUM_CAPACITY;
                int newCapacity = table.length;
                while (newCapacity < targetCapacity)
                    newCapacity <<= 1;
                if (newCapacity > table.length)
                    resize(newCapacity);
            }
    
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                put(e.getKey(), e.getValue());
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param  key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
            Entry<K,V> e = removeEntryForKey(key);
            return (e == null ? null : e.value);
        }
    
        /**
         * Removes and returns the entry associated with the specified key
         * in the HashMap.  Returns null if the HashMap contains no mapping
         * for this key.
         */
        final Entry<K,V> removeEntryForKey(Object key) {
            if (size == 0) {
                return null;
            }
            int hash = (key == null) ? 0 : hash(key);
            int i = indexFor(hash, table.length);
            Entry<K,V> prev = table[i];
            Entry<K,V> e = prev;
    
            while (e != null) {
                Entry<K,V> next = e.next;
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    modCount++;
                    size--;
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.recordRemoval(this);
                    return e;
                }
                prev = e;
                e = next;
            }
    
            return e;
        }
    
        /**
         * Special version of remove for EntrySet using {@code Map.Entry.equals()}
         * for matching.
         */
        final Entry<K,V> removeMapping(Object o) {
            if (size == 0 || !(o instanceof Map.Entry))
                return null;
    
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            Object key = entry.getKey();
            int hash = (key == null) ? 0 : hash(key);
            int i = indexFor(hash, table.length);
            Entry<K,V> prev = table[i];
            Entry<K,V> e = prev;
    
            while (e != null) {
                Entry<K,V> next = e.next;
                if (e.hash == hash && e.equals(entry)) {
                    modCount++;
                    size--;
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.recordRemoval(this);
                    return e;
                }
                prev = e;
                e = next;
            }
    
            return e;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         */
        public void clear() {
            modCount++;
            Arrays.fill(table, null);
            size = 0;
        }
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         *
         * @param value value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         */
        public boolean containsValue(Object value) {
            if (value == null)
                return containsNullValue();
    
            Entry[] tab = table;
            for (int i = 0; i < tab.length ; i++)
                for (Entry e = tab[i] ; e != null ; e = e.next)
                    if (value.equals(e.value))
                        return true;
            return false;
        }
    
        /**
         * Special-case code for containsValue with null argument
         */
        private boolean containsNullValue() {
            Entry[] tab = table;
            for (int i = 0; i < tab.length ; i++)
                for (Entry e = tab[i] ; e != null ; e = e.next)
                    if (e.value == null)
                        return true;
            return false;
        }
    
        /**
         * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
         * values themselves are not cloned.
         *
         * @return a shallow copy of this map
         */
        public Object clone() {
            HashMap<K,V> result = null;
            try {
                result = (HashMap<K,V>)super.clone();
            } catch (CloneNotSupportedException e) {
                // assert false;
            }
            if (result.table != EMPTY_TABLE) {
                result.inflateTable(Math.min(
                    (int) Math.min(
                        size * Math.min(1 / loadFactor, 4.0f),
                        // we have limits...
                        HashMap.MAXIMUM_CAPACITY),
                   table.length));
            }
            result.entrySet = null;
            result.modCount = 0;
            result.size = 0;
            result.init();
            result.putAllForCreate(this);
    
            return result;
        }
    
        static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            int hash;
    
            /**
             * Creates new entry.
             */
            Entry(int h, K k, V v, Entry<K,V> n) {
                value = v;
                next = n;
                key = k;
                hash = h;
            }
    
            public final K getKey() {
                return key;
            }
    
            public final V getValue() {
                return value;
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry e = (Map.Entry)o;
                Object k1 = getKey();
                Object k2 = e.getKey();
                if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                    Object v1 = getValue();
                    Object v2 = e.getValue();
                    if (v1 == v2 || (v1 != null && v1.equals(v2)))
                        return true;
                }
                return false;
            }
    
            public final int hashCode() {
                return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
            }
    
            public final String toString() {
                return getKey() + "=" + getValue();
            }
    
            /**
             * This method is invoked whenever the value in an entry is
             * overwritten by an invocation of put(k,v) for a key k that's already
             * in the HashMap.
             */
            void recordAccess(HashMap<K,V> m) {
            }
    
            /**
             * This method is invoked whenever the entry is
             * removed from the table.
             */
            void recordRemoval(HashMap<K,V> m) {
            }
        }
    
        /**
         * Adds a new entry with the specified key, value and hash code to
         * the specified bucket.  It is the responsibility of this
         * method to resize the table if appropriate.
         *
         * Subclass overrides this to alter the behavior of put method.
         */
        void addEntry(int hash, K key, V value, int bucketIndex) {
            if ((size >= threshold) && (null != table[bucketIndex])) {
                resize(2 * table.length);
                hash = (null != key) ? hash(key) : 0;
                bucketIndex = indexFor(hash, table.length);
            }
    
            createEntry(hash, key, value, bucketIndex);
        }
    
        /**
         * Like addEntry except that this version is used when creating entries
         * as part of Map construction or "pseudo-construction" (cloning,
         * deserialization).  This version needn't worry about resizing the table.
         *
         * Subclass overrides this to alter the behavior of HashMap(Map),
         * clone, and readObject.
         */
        void createEntry(int hash, K key, V value, int bucketIndex) {
            Entry<K,V> e = table[bucketIndex];
            table[bucketIndex] = new Entry<>(hash, key, value, e);
            size++;
        }
    
        private abstract class HashIterator<E> implements Iterator<E> {
            Entry<K,V> next;        // next entry to return
            int expectedModCount;   // For fast-fail
            int index;              // current slot
            Entry<K,V> current;     // current entry
    
            HashIterator() {
                expectedModCount = modCount;
                if (size > 0) { // advance to first entry
                    Entry[] t = table;
                    while (index < t.length && (next = t[index++]) == null)
                        ;
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Entry<K,V> nextEntry() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                Entry<K,V> e = next;
                if (e == null)
                    throw new NoSuchElementException();
    
                if ((next = e.next) == null) {
                    Entry[] t = table;
                    while (index < t.length && (next = t[index++]) == null)
                        ;
                }
                current = e;
                return e;
            }
    
            public void remove() {
                if (current == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                Object k = current.key;
                current = null;
                HashMap.this.removeEntryForKey(k);
                expectedModCount = modCount;
            }
        }
    
        private final class ValueIterator extends HashIterator<V> {
            public V next() {
                return nextEntry().value;
            }
        }
    
        private final class KeyIterator extends HashIterator<K> {
            public K next() {
                return nextEntry().getKey();
            }
        }
    
        private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
            public Map.Entry<K,V> next() {
                return nextEntry();
            }
        }
    
        // Subclass overrides these to alter behavior of views' iterator() method
        Iterator<K> newKeyIterator()   {
            return new KeyIterator();
        }
        Iterator<V> newValueIterator()   {
            return new ValueIterator();
        }
        Iterator<Map.Entry<K,V>> newEntryIterator()   {
            return new EntryIterator();
        }
    
    
        // Views
    
        private transient Set<Map.Entry<K,V>> entrySet = null;
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined.  The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         */
        public Set<K> keySet() {
            Set<K> ks = keySet;
            return (ks != null ? ks : (keySet = new KeySet()));
        }
    
        private final class KeySet extends AbstractSet<K> {
            public Iterator<K> iterator() {
                return newKeyIterator();
            }
            public int size() {
                return size;
            }
            public boolean contains(Object o) {
                return containsKey(o);
            }
            public boolean remove(Object o) {
                return HashMap.this.removeEntryForKey(o) != null;
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined.  The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         */
        public Collection<V> values() {
            Collection<V> vs = values;
            return (vs != null ? vs : (values = new Values()));
        }
    
        private final class Values extends AbstractCollection<V> {
            public Iterator<V> iterator() {
                return newValueIterator();
            }
            public int size() {
                return size;
            }
            public boolean contains(Object o) {
                return containsValue(o);
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined.  The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations.  It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a set view of the mappings contained in this map
         */
        public Set<Map.Entry<K,V>> entrySet() {
            return entrySet0();
        }
    
        private Set<Map.Entry<K,V>> entrySet0() {
            Set<Map.Entry<K,V>> es = entrySet;
            return es != null ? es : (entrySet = new EntrySet());
        }
    
        private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public Iterator<Map.Entry<K,V>> iterator() {
                return newEntryIterator();
            }
            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<K,V> e = (Map.Entry<K,V>) o;
                Entry<K,V> candidate = getEntry(e.getKey());
                return candidate != null && candidate.equals(e);
            }
            public boolean remove(Object o) {
                return removeMapping(o) != null;
            }
            public int size() {
                return size;
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
         * serialize it).
         *
         * @serialData The <i>capacity</i> of the HashMap (the length of the
         *             bucket array) is emitted (int), followed by the
         *             <i>size</i> (an int, the number of key-value
         *             mappings), followed by the key (Object) and value (Object)
         *             for each key-value mapping.  The key-value mappings are
         *             emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws IOException
        {
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
    
            // Write out number of buckets
            if (table==EMPTY_TABLE) {
                s.writeInt(roundUpToPowerOf2(threshold));
            } else {
               s.writeInt(table.length);
            }
    
            // Write out size (number of Mappings)
            s.writeInt(size);
    
            // Write out keys and values (alternating)
            if (size > 0) {
                for(Map.Entry<K,V> e : entrySet0()) {
                    s.writeObject(e.getKey());
                    s.writeObject(e.getValue());
                }
            }
        }
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /**
         * Reconstitute the {@code HashMap} instance from a stream (i.e.,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
             throws IOException, ClassNotFoundException
        {
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
                throw new InvalidObjectException("Illegal load factor: " +
                                                   loadFactor);
            }
    
            // set other fields that need values
            table = (Entry<K,V>[]) EMPTY_TABLE;
    
            // Read in number of buckets
            s.readInt(); // ignored.
    
            // Read number of mappings
            int mappings = s.readInt();
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                                                   mappings);
    
            // capacity chosen by number of mappings and desired load (if >= 0.25)
            int capacity = (int) Math.min(
                        mappings * Math.min(1 / loadFactor, 4.0f),
                        // we have limits...
                        HashMap.MAXIMUM_CAPACITY);
    
            // allocate the bucket array;
            if (mappings > 0) {
                inflateTable(capacity);
            } else {
                threshold = capacity;
            }
    
            init();  // Give subclass a chance to do its thing.
    
            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                K key = (K) s.readObject();
                V value = (V) s.readObject();
                putForCreate(key, value);
            }
        }
    
        // These methods are used when serializing HashSets
        int   capacity()     { return table.length; }
        float loadFactor()   { return loadFactor;   }
    }
    View Code

    代码量1189,不多不多,继续分析要点

    1. 接口分析

    HashMap继承于AbstractMap抽象类

    Map,Cloneable,java.io.Serializable接口

    2. 实现原理

    标准的链地址法处理冲突

    定义名为table的Entry数组,用hashcode计算put进来的元素应该被存储到table的第几个格子里,如果发生冲突,则建立单链表

    Entry格式如下

    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
    }

    3. 扩容

    在put元素的时候,如果发现需要新建Entry(key已经存在,更新value不算),那么会调用addEntry函数

    在addEntry函数中,会比较map的当前元素数量是否大于等于阈值threshold(table.length * loadFactor装填因子),以及这个Entry对应的table中的位置是否已有Entry了(如果为null,直接挂上即可,get这个元素的时候无需查找链表。如果不为null,会增加这个格子中链表的长度,get这个元素时的平均查找长度会增长。)

    如果两个条件都满足,则进行扩容操作,调用resize函数,将table长度扩展为原来的两倍

    在resize函数中,会创建新的Entry数组newTable,以及更新扩容阈值threshold等操作,然后调用transfer函数

    在transfer函数中,会遍历oldTable中的所有元素,然后遍历每个元素对应的链表(如果有的话),然后计算这些元素在newTable中的位置,并将其转移到newTable中。

    这一操作用的是头插法,所以如果有元素在oldTable和newTable都是在同一链表中,那么它们会逆序。

    transfer函数如下

    /**
     * Transfers all entries from current table to newTable.
     */
    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);//entry在newTable中的地址
                e.next = newTable[i];//entry指向newTable[i]的表头,头插法
                newTable[i] = e;//更新newTable[i]的表头
                e = next;//尝试迁移下一个元素
            }
        }
    }

    这个函数在单线程下可以正常工作,多线程下可能会形成环形链表,导致get元素时无限循环,参见陈皓的这篇博文。所以HashMap不是线程安全的,在并发情况下,请加锁或者使用其他容器。

    4. 不创建/删除Entry时不会更新modCount

    HashMap中也维护了modCount变量来保证迭代器可以侦测到意外的修改,并快速失败的抛出ConcurrentModificationException

    比较有意思的一点是,在put元素时,只有新建Entry,才会更新modCount。如果put的key已经存在,只是更新value的话,modCount是不会变动的

    想一想,感觉这个设定非常合理,因为迭代器是以Entry为单位来工作的,只要Entry不发生变化,Entry里的value怎么改都没有关系。

    5. 迭代器
    HashMap没有直接的迭代器,但是可以通过调用HashMap.keySet(),HashMap.values(),HashMap.entrySet()来获得Set或者Collection对象,然后调用它们的iterator方法来获取迭代器。

    以keySet为例,关键代码如下所示

    public Set<K> keySet() {
        Set<K> ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }
    
    private final class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return newKeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return HashMap.this.removeEntryForKey(o) != null;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }
    
    Iterator<K> newKeyIterator()   {
        return new KeyIterator();
    }
    private final class KeyIterator extends HashIterator<K> {
        public K next() {
            return nextEntry().getKey();
        }
    }
    private abstract class HashIterator<E> implements Iterator<E> {
        Entry<K,V> next;        // next entry to return
        int expectedModCount;   // For fast-fail
        int index;              // current slot
        Entry<K,V> current;     // current entry
    
        HashIterator() {
            expectedModCount = modCount;
            if (size > 0) { // advance to first entry
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
        }
    
        public final boolean hasNext() {
            return next != null;
        }
    
        final Entry<K,V> nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
    
            if ((next = e.next) == null) {
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
            current = e;
            return e;
        }
    
        public void remove() {
            if (current == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Object k = current.key;
            current = null;
            HashMap.this.removeEntryForKey(k);
            expectedModCount = modCount;
        }
    }

    这一块的代码比较有趣,先定义了HashIterator这一抽象类,HashIterator.nextEntry()方法可以遍历整个HashMap并返回当前遍历到的Entry

    然后定义KeyIterator,继承于HashIterator,只实现了next方法,直接调用HashIterator.nextEntry()方法,从返回的Entry中取key并返回。

    然后定义KeySet,继承于AbstractSet,只实现了size/contains/remove/clear(父类实现得太裸,效率低下)方法,全是调用关联的外部的HashMap中的相关方法完成的,iterator方法则是返回上一步中提到的KeyIterator。

    由于AbstractSet继承于AbstractCollection,所以remove、isEmpry这样的方法都无需实现了。

     EntryIterator与ValueIterator同理

    6. hashCode()与equals()

    很多地方都说到如果重写了某个类的equals方法,那也必须要重写它的hashCode方法

    分析一下如果不这么做会有什么后果。

    假设有两个对象A,B,由于重写了equals方法,A.equals(B) == true,但是由于没有重写hashCode方法,A.hashCode() 与B.hashCode() 都会去调用Object.hashCode()方法,这是一个native方法,不知道里面做了什么,但是返回的结果多半是不同的。

    也就是A.equals(B) == true,但是A.hashCode() != B.hashCode()

    如果将A和B放到同一个HashMap里,由于hashCode不同,很可能会被放到不同的slot里,也就是A与B不冲突的存放成功,这不符合我们的期望。

    所以如果重写了某个class的equals方法,那也必须要重写它的hashCode方法,并且保证equals的对象彼此的hashCode一定相同。

    7. 对key为null的处理

    如果插入的key为null,那么它会被放到table的第0号格子里。也就是说,可以向HashMap中插入key为null的键值对。HashTable不行

    与之相关的代码如下

        /**
         * Offloaded version of put for null keys
         */
        private V putForNullKey(V value) {
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            modCount++;
            addEntry(0, null, value, 0);
            return null;
        }
  • 相关阅读:
    android 保存图片,及将图片更新到图库
    android 点击数字跳转到电话界面
    使用Picasso将加载的图片变成圆形
    如何获取listview里面的edittext或者RadioGroup的值,涉及到引发的混乱现象
    返回页面,并将此页面数据刷新一遍
    DrawerLayout建立侧滑时,显示侧滑页面,底层页面仍可以有点击响应,解决办法。
    实现双击退出程序
    sql语句查找某一列的值得最大值。
    vue 实战笔记一项目准备
    node的基础知识
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7127901.html
Copyright © 2011-2022 走看看