zoukankan      html  css  js  c++  java
  • J.U.C并发框架源码阅读(八)ArrayBlockingQueue

    基于版本jdk1.7.0_80

    java.util.concurrent.ArrayBlockingQueue

    代码如下

    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea with assistance from members of JCP JSR-166
     * Expert Group and released to the public domain, as explained at
     * http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    package java.util.concurrent;
    import java.util.concurrent.locks.*;
    import java.util.*;
    
    /**
     * A bounded {@linkplain BlockingQueue blocking queue} backed by an
     * array.  This queue orders elements FIFO (first-in-first-out).  The
     * <em>head</em> of the queue is that element that has been on the
     * queue the longest time.  The <em>tail</em> of the queue is that
     * element that has been on the queue the shortest time. New elements
     * are inserted at the tail of the queue, and the queue retrieval
     * operations obtain elements at the head of the queue.
     *
     * <p>This is a classic &quot;bounded buffer&quot;, in which a
     * fixed-sized array holds elements inserted by producers and
     * extracted by consumers.  Once created, the capacity cannot be
     * changed.  Attempts to {@code put} an element into a full queue
     * will result in the operation blocking; attempts to {@code take} an
     * element from an empty queue will similarly block.
     *
     * <p>This class supports an optional fairness policy for ordering
     * waiting producer and consumer threads.  By default, this ordering
     * is not guaranteed. However, a queue constructed with fairness set
     * to {@code true} grants threads access in FIFO order. Fairness
     * generally decreases throughput but reduces variability and avoids
     * starvation.
     *
     * <p>This class and its iterator implement all of the
     * <em>optional</em> methods of the {@link Collection} and {@link
     * Iterator} interfaces.
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @since 1.5
     * @author Doug Lea
     * @param <E> the type of elements held in this collection
     */
    public class ArrayBlockingQueue<E> extends AbstractQueue<E>
            implements BlockingQueue<E>, java.io.Serializable {
    
        /**
         * Serialization ID. This class relies on default serialization
         * even for the items array, which is default-serialized, even if
         * it is empty. Otherwise it could not be declared final, which is
         * necessary here.
         */
        private static final long serialVersionUID = -817911632652898426L;
    
        /** The queued items */
        final Object[] items;
    
        /** items index for next take, poll, peek or remove */
        int takeIndex;
    
        /** items index for next put, offer, or add */
        int putIndex;
    
        /** Number of elements in the queue */
        int count;
    
        /*
         * Concurrency control uses the classic two-condition algorithm
         * found in any textbook.
         */
    
        /** Main lock guarding all access */
        final ReentrantLock lock;
        /** Condition for waiting takes */
        private final Condition notEmpty;
        /** Condition for waiting puts */
        private final Condition notFull;
    
        // Internal helper methods
    
        /**
         * Circularly increment i.
         */
        final int inc(int i) {
            return (++i == items.length) ? 0 : i;
        }
    
        /**
         * Circularly decrement i.
         */
        final int dec(int i) {
            return ((i == 0) ? items.length : i) - 1;
        }
    
        @SuppressWarnings("unchecked")
        static <E> E cast(Object item) {
            return (E) item;
        }
    
        /**
         * Returns item at index i.
         */
        final E itemAt(int i) {
            return this.<E>cast(items[i]);
        }
    
        /**
         * Throws NullPointerException if argument is null.
         *
         * @param v the element
         */
        private static void checkNotNull(Object v) {
            if (v == null)
                throw new NullPointerException();
        }
    
        /**
         * Inserts element at current put position, advances, and signals.
         * Call only when holding lock.
         */
        private void insert(E x) {
            items[putIndex] = x;
            putIndex = inc(putIndex);
            ++count;
            notEmpty.signal();
        }
    
        /**
         * Extracts element at current take position, advances, and signals.
         * Call only when holding lock.
         */
        private E extract() {
            final Object[] items = this.items;
            E x = this.<E>cast(items[takeIndex]);
            items[takeIndex] = null;
            takeIndex = inc(takeIndex);
            --count;
            notFull.signal();
            return x;
        }
    
        /**
         * Deletes item at position i.
         * Utility for remove and iterator.remove.
         * Call only when holding lock.
         */
        void removeAt(int i) {
            final Object[] items = this.items;
            // if removing front item, just advance
            if (i == takeIndex) {
                items[takeIndex] = null;
                takeIndex = inc(takeIndex);
            } else {
                // slide over all others up through putIndex.
                for (;;) {
                    int nexti = inc(i);
                    if (nexti != putIndex) {
                        items[i] = items[nexti];
                        i = nexti;
                    } else {
                        items[i] = null;
                        putIndex = i;
                        break;
                    }
                }
            }
            --count;
            notFull.signal();
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed)
         * capacity and default access policy.
         *
         * @param capacity the capacity of this queue
         * @throws IllegalArgumentException if {@code capacity < 1}
         */
        public ArrayBlockingQueue(int capacity) {
            this(capacity, false);
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed)
         * capacity and the specified access policy.
         *
         * @param capacity the capacity of this queue
         * @param fair if {@code true} then queue accesses for threads blocked
         *        on insertion or removal, are processed in FIFO order;
         *        if {@code false} the access order is unspecified.
         * @throws IllegalArgumentException if {@code capacity < 1}
         */
        public ArrayBlockingQueue(int capacity, boolean fair) {
            if (capacity <= 0)
                throw new IllegalArgumentException();
            this.items = new Object[capacity];
            lock = new ReentrantLock(fair);
            notEmpty = lock.newCondition();
            notFull =  lock.newCondition();
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed)
         * capacity, the specified access policy and initially containing the
         * elements of the given collection,
         * added in traversal order of the collection's iterator.
         *
         * @param capacity the capacity of this queue
         * @param fair if {@code true} then queue accesses for threads blocked
         *        on insertion or removal, are processed in FIFO order;
         *        if {@code false} the access order is unspecified.
         * @param c the collection of elements to initially contain
         * @throws IllegalArgumentException if {@code capacity} is less than
         *         {@code c.size()}, or less than 1.
         * @throws NullPointerException if the specified collection or any
         *         of its elements are null
         */
        public ArrayBlockingQueue(int capacity, boolean fair,
                                  Collection<? extends E> c) {
            this(capacity, fair);
    
            final ReentrantLock lock = this.lock;
            lock.lock(); // Lock only for visibility, not mutual exclusion
            try {
                int i = 0;
                try {
                    for (E e : c) {
                        checkNotNull(e);
                        items[i++] = e;
                    }
                } catch (ArrayIndexOutOfBoundsException ex) {
                    throw new IllegalArgumentException();
                }
                count = i;
                putIndex = (i == capacity) ? 0 : i;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue if it is
         * possible to do so immediately without exceeding the queue's capacity,
         * returning {@code true} upon success and throwing an
         * {@code IllegalStateException} if this queue is full.
         *
         * @param e the element to add
         * @return {@code true} (as specified by {@link Collection#add})
         * @throws IllegalStateException if this queue is full
         * @throws NullPointerException if the specified element is null
         */
        public boolean add(E e) {
            return super.add(e);
        }
    
        /**
         * Inserts the specified element at the tail of this queue if it is
         * possible to do so immediately without exceeding the queue's capacity,
         * returning {@code true} upon success and {@code false} if this queue
         * is full.  This method is generally preferable to method {@link #add},
         * which can fail to insert an element only by throwing an exception.
         *
         * @throws NullPointerException if the specified element is null
         */
        public boolean offer(E e) {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                if (count == items.length)
                    return false;
                else {
                    insert(e);
                    return true;
                }
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue, waiting
         * for space to become available if the queue is full.
         *
         * @throws InterruptedException {@inheritDoc}
         * @throws NullPointerException {@inheritDoc}
         */
        public void put(E e) throws InterruptedException {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == items.length)
                    notFull.await();
                insert(e);
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue, waiting
         * up to the specified wait time for space to become available if
         * the queue is full.
         *
         * @throws InterruptedException {@inheritDoc}
         * @throws NullPointerException {@inheritDoc}
         */
        public boolean offer(E e, long timeout, TimeUnit unit)
            throws InterruptedException {
    
            checkNotNull(e);
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == items.length) {
                    if (nanos <= 0)
                        return false;
                    nanos = notFull.awaitNanos(nanos);
                }
                insert(e);
                return true;
            } finally {
                lock.unlock();
            }
        }
    
        public E poll() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return (count == 0) ? null : extract();
            } finally {
                lock.unlock();
            }
        }
    
        public E take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == 0)
                    notEmpty.await();
                return extract();
            } finally {
                lock.unlock();
            }
        }
    
        public E poll(long timeout, TimeUnit unit) throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == 0) {
                    if (nanos <= 0)
                        return null;
                    nanos = notEmpty.awaitNanos(nanos);
                }
                return extract();
            } finally {
                lock.unlock();
            }
        }
    
        public E peek() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return (count == 0) ? null : itemAt(takeIndex);
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is overridden to remove the reference to collections
        // greater in size than Integer.MAX_VALUE
        /**
         * Returns the number of elements in this queue.
         *
         * @return the number of elements in this queue
         */
        public int size() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return count;
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is a modified copy of the inherited doc comment,
        // without the reference to unlimited queues.
        /**
         * Returns the number of additional elements that this queue can ideally
         * (in the absence of memory or resource constraints) accept without
         * blocking. This is always equal to the initial capacity of this queue
         * less the current {@code size} of this queue.
         *
         * <p>Note that you <em>cannot</em> always tell if an attempt to insert
         * an element will succeed by inspecting {@code remainingCapacity}
         * because it may be the case that another thread is about to
         * insert or remove an element.
         */
        public int remainingCapacity() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return items.length - count;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Removes a single instance of the specified element from this queue,
         * if it is present.  More formally, removes an element {@code e} such
         * that {@code o.equals(e)}, if this queue contains one or more such
         * elements.
         * Returns {@code true} if this queue contained the specified element
         * (or equivalently, if this queue changed as a result of the call).
         *
         * <p>Removal of interior elements in circular array based queues
         * is an intrinsically slow and disruptive operation, so should
         * be undertaken only in exceptional circumstances, ideally
         * only when the queue is known not to be accessible by other
         * threads.
         *
         * @param o element to be removed from this queue, if present
         * @return {@code true} if this queue changed as a result of the call
         */
        public boolean remove(Object o) {
            if (o == null) return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
                    if (o.equals(items[i])) {
                        removeAt(i);
                        return true;
                    }
                }
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns {@code true} if this queue contains the specified element.
         * More formally, returns {@code true} if and only if this queue contains
         * at least one element {@code e} such that {@code o.equals(e)}.
         *
         * @param o object to be checked for containment in this queue
         * @return {@code true} if this queue contains the specified element
         */
        public boolean contains(Object o) {
            if (o == null) return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    if (o.equals(items[i]))
                        return true;
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in
         * proper sequence.
         *
         * <p>The returned array will be "safe" in that no references to it are
         * maintained by this queue.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         *
         * <p>This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this queue
         */
        public Object[] toArray() {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                final int count = this.count;
                Object[] a = new Object[count];
                for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
                    a[k] = items[i];
                return a;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in
         * proper sequence; the runtime type of the returned array is that of
         * the specified array.  If the queue fits in the specified array, it
         * is returned therein.  Otherwise, a new array is allocated with the
         * runtime type of the specified array and the size of this queue.
         *
         * <p>If this queue fits in the specified array with room to spare
         * (i.e., the array has more elements than this queue), the element in
         * the array immediately following the end of the queue is set to
         * {@code null}.
         *
         * <p>Like the {@link #toArray()} method, this method acts as bridge between
         * array-based and collection-based APIs.  Further, this method allows
         * precise control over the runtime type of the output array, and may,
         * under certain circumstances, be used to save allocation costs.
         *
         * <p>Suppose {@code x} is a queue known to contain only strings.
         * The following code can be used to dump the queue into a newly
         * allocated array of {@code String}:
         *
         * <pre>
         *     String[] y = x.toArray(new String[0]);</pre>
         *
         * Note that {@code toArray(new Object[0])} is identical in function to
         * {@code toArray()}.
         *
         * @param a the array into which the elements of the queue are to
         *          be stored, if it is big enough; otherwise, a new array of the
         *          same runtime type is allocated for this purpose
         * @return an array containing all of the elements in this queue
         * @throws ArrayStoreException if the runtime type of the specified array
         *         is not a supertype of the runtime type of every element in
         *         this queue
         * @throws NullPointerException if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                final int count = this.count;
                final int len = a.length;
                if (len < count)
                    a = (T[])java.lang.reflect.Array.newInstance(
                        a.getClass().getComponentType(), count);
                for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
                    a[k] = (T) items[i];
                if (len > count)
                    a[count] = null;
                return a;
            } finally {
                lock.unlock();
            }
        }
    
        public String toString() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int k = count;
                if (k == 0)
                    return "[]";
    
                StringBuilder sb = new StringBuilder();
                sb.append('[');
                for (int i = takeIndex; ; i = inc(i)) {
                    Object e = items[i];
                    sb.append(e == this ? "(this Collection)" : e);
                    if (--k == 0)
                        return sb.append(']').toString();
                    sb.append(',').append(' ');
                }
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Atomically removes all of the elements from this queue.
         * The queue will be empty after this call returns.
         */
        public void clear() {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    items[i] = null;
                count = 0;
                putIndex = 0;
                takeIndex = 0;
                notFull.signalAll();
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int i = takeIndex;
                int n = 0;
                int max = count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count = 0;
                    putIndex = 0;
                    takeIndex = 0;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c, int maxElements) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            if (maxElements <= 0)
                return 0;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int i = takeIndex;
                int n = 0;
                int max = (maxElements < count) ? maxElements : count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count -= n;
                    takeIndex = i;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an iterator over the elements in this queue in proper sequence.
         * The elements will be returned in order from first (head) to last (tail).
         *
         * <p>The returned {@code Iterator} is a "weakly consistent" iterator that
         * will never throw {@link java.util.ConcurrentModificationException
         * ConcurrentModificationException},
         * and guarantees to traverse elements as they existed upon
         * construction of the iterator, and may (but is not guaranteed to)
         * reflect any modifications subsequent to construction.
         *
         * @return an iterator over the elements in this queue in proper sequence
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        /**
         * Iterator for ArrayBlockingQueue. To maintain weak consistency
         * with respect to puts and takes, we (1) read ahead one slot, so
         * as to not report hasNext true but then not have an element to
         * return -- however we later recheck this slot to use the most
         * current value; (2) ensure that each array slot is traversed at
         * most once (by tracking "remaining" elements); (3) skip over
         * null slots, which can occur if takes race ahead of iterators.
         * However, for circular array-based queues, we cannot rely on any
         * well established definition of what it means to be weakly
         * consistent with respect to interior removes since these may
         * require slot overwrites in the process of sliding elements to
         * cover gaps. So we settle for resiliency, operating on
         * established apparent nexts, which may miss some elements that
         * have moved between calls to next.
         */
        private class Itr implements Iterator<E> {
            private int remaining; // Number of elements yet to be returned
            private int nextIndex; // Index of element to be returned by next
            private E nextItem;    // Element to be returned by next call to next
            private E lastItem;    // Element returned by last call to next
            private int lastRet;   // Index of last element returned, or -1 if none
    
            Itr() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    lastRet = -1;
                    if ((remaining = count) > 0)
                        nextItem = itemAt(nextIndex = takeIndex);
                } finally {
                    lock.unlock();
                }
            }
    
            public boolean hasNext() {
                return remaining > 0;
            }
    
            public E next() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    if (remaining <= 0)
                        throw new NoSuchElementException();
                    lastRet = nextIndex;
                    E x = itemAt(nextIndex);  // check for fresher value
                    if (x == null) {
                        x = nextItem;         // we are forced to report old value
                        lastItem = null;      // but ensure remove fails
                    }
                    else
                        lastItem = x;
                    while (--remaining > 0 && // skip over nulls
                           (nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
                        ;
                    return x;
                } finally {
                    lock.unlock();
                }
            }
    
            public void remove() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    int i = lastRet;
                    if (i == -1)
                        throw new IllegalStateException();
                    lastRet = -1;
                    E x = lastItem;
                    lastItem = null;
                    // only remove if item still at index
                    if (x != null && x == items[i]) {
                        boolean removingHead = (i == takeIndex);
                        removeAt(i);
                        if (!removingHead)
                            nextIndex = dec(nextIndex);
                    }
                } finally {
                    lock.unlock();
                }
            }
        }
    
    }
    View Code

    0. ArrayBlockingQueue简介

    用循环数组实现的有界阻塞队列,线程安全。初始化时要求设定容量,在队列满时继续put元素会被阻塞,在队列为空时继续poll元素也会被阻塞。

    ArrayBlockingQueue也提供了非阻塞以及可中断的插入/提取元素的方法。

    1. 接口分析

    ArrayBlockingQueue继承于AbstractQueue抽象类

    BlockingQueue<E>(阻塞队列语义), java.io.Serializable接口

    2. ArrayBlockingQueue原理概述

    ArrayBlockingQueue内部维护了一个ReentrantLock对象lock,lock有两个Condition:notEmpty与notFull,所有对ArrayBlockingQueue的操作都会用lock加锁,所以ArrayBlockingQueue是线程安全的。

    而在调用ArrayBlockingQueue的put方法时,会检查队列长度,如果队列已满,则调用notFull.await等待。在调用ArrayBlockingQueue的poll方法时,则会直接调用notFull.signal,如果有线程在notFull.await上等待,这个线程就会被唤醒,从而实现了队列满时继续put元素会被阻塞的语义。

    在队列为空时继续poll元素也会被阻塞的语义的实现原理也是类似的。

    3. ArrayBlockingQueue的关键方法解析

        /** The queued items */
        final Object[] items;//底层存储容器
    
        /** items index for next take, poll, peek or remove */
        int takeIndex;
    
        /** items index for next put, offer, or add */
        int putIndex;
    
        /** Number of elements in the queue */
        int count;
    
        /*
         * Concurrency control uses the classic two-condition algorithm
         * found in any textbook.
         */
    
        /** Main lock guarding all access */
        final ReentrantLock lock;//全局锁
        /** Condition for waiting takes */
        private final Condition notEmpty;
        /** Condition for waiting puts */
        private final Condition notFull;
    
        // Internal helper methods
    
        /**
         * Circularly increment i.
         */
        final int inc(int i) {
            return (++i == items.length) ? 0 : i;
        }
    
        /**
         * Circularly decrement i.
         */
        final int dec(int i) {
            return ((i == 0) ? items.length : i) - 1;
        }
    
        /**
         * Inserts element at current put position, advances, and signals.
         * Call only when holding lock.
         */
        private void insert(E x) {//向队列中插入元素
            items[putIndex] = x;//把元素放到putIndex对应的位置上
            putIndex = inc(putIndex);//更新putIndex
            ++count;//计数器自加
            notEmpty.signal();//唤醒可能在notEmpty条件上等待的线程
        }
    
        /**
         * Extracts element at current take position, advances, and signals.
         * Call only when holding lock.
         */
        private E extract() {//从队列中提取元素
            final Object[] items = this.items;
            E x = this.<E>cast(items[takeIndex]);//获取takeIndex位置上的元素
            items[takeIndex] = null;//takeIndex位置上的元素清空,便于gc
            takeIndex = inc(takeIndex);//更新takeIndex
            --count;//计数器自减
            notFull.signal();//唤醒可能在notFull条件上等待的线程
            return x;
        }
    
        /**
         * Deletes item at position i.
         * Utility for remove and iterator.remove.
         * Call only when holding lock.
         */
        void removeAt(int i) {
            final Object[] items = this.items;
            // if removing front item, just advance
            if (i == takeIndex) {
                items[takeIndex] = null;
                takeIndex = inc(takeIndex);
            } else {
                // slide over all others up through putIndex.
                for (;;) {
                    int nexti = inc(i);
                    if (nexti != putIndex) {
                        items[i] = items[nexti];
                        i = nexti;
                    } else {
                        items[i] = null;
                        putIndex = i;
                        break;
                    }
                }
            }
            --count;//计数器自减
            notFull.signal();//唤醒可能在notFull条件上等待的线程
        }
    
        /**
         * Inserts the specified element at the tail of this queue if it is
         * possible to do so immediately without exceeding the queue's capacity,
         * returning {@code true} upon success and {@code false} if this queue
         * is full.  This method is generally preferable to method {@link #add},
         * which can fail to insert an element only by throwing an exception.
         *
         * @throws NullPointerException if the specified element is null
         */
        public boolean offer(E e) {//不阻塞的插入方法
            checkNotNull(e);
            final ReentrantLock lock = this.lock;//加上全局锁,保证只有当前线程在操作
            lock.lock();
            try {
                if (count == items.length)//如果队列已满,直接返回false,不阻塞
                    return false;
                else {
                    insert(e);
                    return true;
                }
            } finally {
                lock.unlock();//解锁
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue, waiting
         * for space to become available if the queue is full.
         *
         * @throws InterruptedException {@inheritDoc}
         * @throws NullPointerException {@inheritDoc}
         */
        public void put(E e) throws InterruptedException {//可中断的阻塞插入方法
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();//加上可中断的全局锁
            try {
                while (count == items.length)//如果队列已满,在notFull信号量上等待
                    notFull.await();
                insert(e);//此时队列必然不满,可以安全插入元素
            } finally {
                lock.unlock();//解锁
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue, waiting
         * up to the specified wait time for space to become available if
         * the queue is full.
         *
         * @throws InterruptedException {@inheritDoc}
         * @throws NullPointerException {@inheritDoc}
         */
        public boolean offer(E e, long timeout, TimeUnit unit)//可中断可超时的阻塞插入方法
            throws InterruptedException {
    
            checkNotNull(e);
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();//加上可中断的全局锁
            try {
                while (count == items.length) {//如果队列已满,在notFull条件上等待指定的时间
                    if (nanos <= 0)//如果已超时,返回false
                        return false;
                    nanos = notFull.awaitNanos(nanos);
                }
                insert(e);//此时队列必然不满,可以安全插入元素
                return true;
            } finally {
                lock.unlock();//解锁
            }
        }
    
        public E poll() {//不阻塞的提取方法
            final ReentrantLock lock = this.lock;
            lock.lock();//全局锁
            try {
                return (count == 0) ? null : extract();//如果队列为空,直接返回null,否则正常提取元素
            } finally {
                lock.unlock();//解锁
            }
        }
    
        public E take() throws InterruptedException {//可中断的阻塞提取方法
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();//加上可中断的全局锁
            try {
                while (count == 0)//如果队列为空,在notEmpty条件上等待
                    notEmpty.await();
                return extract();//此时队列必然不为空,提取元素并返回
            } finally {
                lock.unlock();//解锁
            }
        }
    
        public E poll(long timeout, TimeUnit unit) throws InterruptedException {//可中断可超时的阻塞提取方法
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();//加上可中断的全局锁
            try {
                while (count == 0) {//如果队列为空,在notEmptyl条件上等待指定的时间
                    if (nanos <= 0)//如果已超时,返回null
                        return null;
                    nanos = notEmpty.awaitNanos(nanos);
                }
                return extract();//此时队列必然不空,可以安全提取元素
            } finally {
                lock.unlock();
            }
        }
    
        public E peek() {//获取队首元素
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {
                return (count == 0) ? null : itemAt(takeIndex);//获取队首元素
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is overridden to remove the reference to collections
        // greater in size than Integer.MAX_VALUE
        /**
         * Returns the number of elements in this queue.
         *
         * @return the number of elements in this queue
         */
        public int size() {
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {
                return count;
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is a modified copy of the inherited doc comment,
        // without the reference to unlimited queues.
        /**
         * Returns the number of additional elements that this queue can ideally
         * (in the absence of memory or resource constraints) accept without
         * blocking. This is always equal to the initial capacity of this queue
         * less the current {@code size} of this queue.
         *
         * <p>Note that you <em>cannot</em> always tell if an attempt to insert
         * an element will succeed by inspecting {@code remainingCapacity}
         * because it may be the case that another thread is about to
         * insert or remove an element.
         */
        public int remainingCapacity() {
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {
                return items.length - count;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Removes a single instance of the specified element from this queue,
         * if it is present.  More formally, removes an element {@code e} such
         * that {@code o.equals(e)}, if this queue contains one or more such
         * elements.
         * Returns {@code true} if this queue contained the specified element
         * (or equivalently, if this queue changed as a result of the call).
         *
         * <p>Removal of interior elements in circular array based queues
         * is an intrinsically slow and disruptive operation, so should
         * be undertaken only in exceptional circumstances, ideally
         * only when the queue is known not to be accessible by other
         * threads.
         *
         * @param o element to be removed from this queue, if present
         * @return {@code true} if this queue changed as a result of the call
         */
        public boolean remove(Object o) {
            if (o == null) return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;//加上全局锁,确保线程安全
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
                    if (o.equals(items[i])) {
                        removeAt(i);
                        return true;
                    }
                }
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns {@code true} if this queue contains the specified element.
         * More formally, returns {@code true} if and only if this queue contains
         * at least one element {@code e} such that {@code o.equals(e)}.
         *
         * @param o object to be checked for containment in this queue
         * @return {@code true} if this queue contains the specified element
         */
        public boolean contains(Object o) {
            if (o == null) return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    if (o.equals(items[i]))
                        return true;
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Atomically removes all of the elements from this queue.
         * The queue will be empty after this call returns.
         */
        public void clear() {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {//清空所有元素,并唤醒在notFull条件上等待的所有线程
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    items[i] = null;
                count = 0;
                putIndex = 0;
                takeIndex = 0;
                notFull.signalAll();
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {//将所有元素转移到c中,并唤醒在notFull条件上等待的所有线程
                int i = takeIndex;
                int n = 0;
                int max = count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count = 0;
                    putIndex = 0;
                    takeIndex = 0;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c, int maxElements) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            if (maxElements <= 0)
                return 0;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();//加上全局锁,确保线程安全
            try {//将n个元素转移到c中,并唤醒在notFull条件上等待的所有线程
                int i = takeIndex;
                int n = 0;
                int max = (maxElements < count) ? maxElements : count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count -= n;
                    takeIndex = i;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }

    代码逻辑很简单,看看注释就明了其原理了。所有涉及到对items数组操作的方法,都加上了全局锁,所以ArrayBlockingQueue是线程安全的。

    ps. 注释里写的非阻塞,是指不会被两个Condition所阻塞,这些方法如果被多线程并发调用,涉及到对lock的争用,那肯定是会在lock上阻塞住的。

    4. ArrayBlockingQueue的迭代器

     ArrayBlockingQueue的迭代器是弱一致的,它不会抛出ConcurrentModificationException。

    设计思路很奇怪,创建迭代器的瞬间,记下了ArrayBlockingQueue的size,与takeIndex的位置(也就是确定了对底层数组的遍历区间),还会缓存住调用next方法即将返回的元素。

    然后在调用next方法时,如果对应的元素已经被删除,返回之前缓存的元素(弱一致性),然后向后遍历,跳过null,直到找到下一个非空元素或者把size个元素都遍历完为止。

    相关源码如下:

        /**
         * Iterator for ArrayBlockingQueue. To maintain weak consistency
         * with respect to puts and takes, we (1) read ahead one slot, so
         * as to not report hasNext true but then not have an element to
         * return -- however we later recheck this slot to use the most
         * current value; (2) ensure that each array slot is traversed at
         * most once (by tracking "remaining" elements); (3) skip over
         * null slots, which can occur if takes race ahead of iterators.
         * However, for circular array-based queues, we cannot rely on any
         * well established definition of what it means to be weakly
         * consistent with respect to interior removes since these may
         * require slot overwrites in the process of sliding elements to
         * cover gaps. So we settle for resiliency, operating on
         * established apparent nexts, which may miss some elements that
         * have moved between calls to next.
         */
        private class Itr implements Iterator<E> {
            private int remaining; // Number of elements yet to be returned
            private int nextIndex; // Index of element to be returned by next
            private E nextItem;    // Element to be returned by next call to next
            private E lastItem;    // Element returned by last call to next
            private int lastRet;   // Index of last element returned, or -1 if none
    
            Itr() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    lastRet = -1;
                    if ((remaining = count) > 0)
                        nextItem = itemAt(nextIndex = takeIndex);
                } finally {
                    lock.unlock();
                }
            }
    
            public boolean hasNext() {
                return remaining > 0;
            }
    
            public E next() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    if (remaining <= 0)
                        throw new NoSuchElementException();
                    lastRet = nextIndex;
                    E x = itemAt(nextIndex);  // check for fresher value
                    if (x == null) {
                        x = nextItem;         // we are forced to report old value
                        lastItem = null;      // but ensure remove fails
                    }
                    else
                        lastItem = x;
                    while (--remaining > 0 && // skip over nulls
                           (nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
                        ;
                    return x;
                } finally {
                    lock.unlock();
                }
            }
    
            public void remove() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    int i = lastRet;
                    if (i == -1)
                        throw new IllegalStateException();
                    lastRet = -1;
                    E x = lastItem;
                    lastItem = null;
                    // only remove if item still at index
                    if (x != null && x == items[i]) {
                        boolean removingHead = (i == takeIndex);
                        removeAt(i);
                        if (!removingHead)
                            nextIndex = dec(nextIndex);
                    }
                } finally {
                    lock.unlock();
                }
            }
        }
  • 相关阅读:
    kubeadm部署kubernetes
    一键部署redis-5.0.5
    二进制部署kubernetes高可用
    设计模式--行为型模式--观察者模式(Observer模式)
    设计模式--行为型模式--状态模式
    设计模式--行为型模式--责任链模式(职责链模式)
    《数学之美》在线阅读
    设计模式--行为型模式--命令模式
    设计模式--行为型模式--策略模式
    设计模式--行为型模式--模板方法模式
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7158432.html
Copyright © 2011-2022 走看看