zoukankan      html  css  js  c++  java
  • J.U.C并发框架源码阅读(十三)ThreadPoolExecutor

    基于版本jdk1.7.0_80

    java.util.concurrent.ThreadPoolExecutor

    代码如下

    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea with assistance from members of JCP JSR-166
     * Expert Group and released to the public domain, as explained at
     * http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    package java.util.concurrent;
    import java.util.concurrent.locks.AbstractQueuedSynchronizer;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.ReentrantLock;
    import java.util.concurrent.atomic.AtomicInteger;
    import java.util.*;
    
    /**
     * An {@link ExecutorService} that executes each submitted task using
     * one of possibly several pooled threads, normally configured
     * using {@link Executors} factory methods.
     *
     * <p>Thread pools address two different problems: they usually
     * provide improved performance when executing large numbers of
     * asynchronous tasks, due to reduced per-task invocation overhead,
     * and they provide a means of bounding and managing the resources,
     * including threads, consumed when executing a collection of tasks.
     * Each {@code ThreadPoolExecutor} also maintains some basic
     * statistics, such as the number of completed tasks.
     *
     * <p>To be useful across a wide range of contexts, this class
     * provides many adjustable parameters and extensibility
     * hooks. However, programmers are urged to use the more convenient
     * {@link Executors} factory methods {@link
     * Executors#newCachedThreadPool} (unbounded thread pool, with
     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
     * (fixed size thread pool) and {@link
     * Executors#newSingleThreadExecutor} (single background thread), that
     * preconfigure settings for the most common usage
     * scenarios. Otherwise, use the following guide when manually
     * configuring and tuning this class:
     *
     * <dl>
     *
     * <dt>Core and maximum pool sizes</dt>
     *
     * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
     * pool size (see {@link #getPoolSize})
     * according to the bounds set by
     * corePoolSize (see {@link #getCorePoolSize}) and
     * maximumPoolSize (see {@link #getMaximumPoolSize}).
     *
     * When a new task is submitted in method {@link #execute}, and fewer
     * than corePoolSize threads are running, a new thread is created to
     * handle the request, even if other worker threads are idle.  If
     * there are more than corePoolSize but less than maximumPoolSize
     * threads running, a new thread will be created only if the queue is
     * full.  By setting corePoolSize and maximumPoolSize the same, you
     * create a fixed-size thread pool. By setting maximumPoolSize to an
     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
     * allow the pool to accommodate an arbitrary number of concurrent
     * tasks. Most typically, core and maximum pool sizes are set only
     * upon construction, but they may also be changed dynamically using
     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
     *
     * <dt>On-demand construction</dt>
     *
     * <dd> By default, even core threads are initially created and
     * started only when new tasks arrive, but this can be overridden
     * dynamically using method {@link #prestartCoreThread} or {@link
     * #prestartAllCoreThreads}.  You probably want to prestart threads if
     * you construct the pool with a non-empty queue. </dd>
     *
     * <dt>Creating new threads</dt>
     *
     * <dd>New threads are created using a {@link ThreadFactory}.  If not
     * otherwise specified, a {@link Executors#defaultThreadFactory} is
     * used, that creates threads to all be in the same {@link
     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
     * non-daemon status. By supplying a different ThreadFactory, you can
     * alter the thread's name, thread group, priority, daemon status,
     * etc. If a {@code ThreadFactory} fails to create a thread when asked
     * by returning null from {@code newThread}, the executor will
     * continue, but might not be able to execute any tasks. Threads
     * should possess the "modifyThread" {@code RuntimePermission}. If
     * worker threads or other threads using the pool do not possess this
     * permission, service may be degraded: configuration changes may not
     * take effect in a timely manner, and a shutdown pool may remain in a
     * state in which termination is possible but not completed.</dd>
     *
     * <dt>Keep-alive times</dt>
     *
     * <dd>If the pool currently has more than corePoolSize threads,
     * excess threads will be terminated if they have been idle for more
     * than the keepAliveTime (see {@link #getKeepAliveTime}). This
     * provides a means of reducing resource consumption when the pool is
     * not being actively used. If the pool becomes more active later, new
     * threads will be constructed. This parameter can also be changed
     * dynamically using method {@link #setKeepAliveTime}. Using a value
     * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
     * disables idle threads from ever terminating prior to shut down. By
     * default, the keep-alive policy applies only when there are more
     * than corePoolSizeThreads. But method {@link
     * #allowCoreThreadTimeOut(boolean)} can be used to apply this
     * time-out policy to core threads as well, so long as the
     * keepAliveTime value is non-zero. </dd>
     *
     * <dt>Queuing</dt>
     *
     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
     * submitted tasks.  The use of this queue interacts with pool sizing:
     *
     * <ul>
     *
     * <li> If fewer than corePoolSize threads are running, the Executor
     * always prefers adding a new thread
     * rather than queuing.</li>
     *
     * <li> If corePoolSize or more threads are running, the Executor
     * always prefers queuing a request rather than adding a new
     * thread.</li>
     *
     * <li> If a request cannot be queued, a new thread is created unless
     * this would exceed maximumPoolSize, in which case, the task will be
     * rejected.</li>
     *
     * </ul>
     *
     * There are three general strategies for queuing:
     * <ol>
     *
     * <li> <em> Direct handoffs.</em> A good default choice for a work
     * queue is a {@link SynchronousQueue} that hands off tasks to threads
     * without otherwise holding them. Here, an attempt to queue a task
     * will fail if no threads are immediately available to run it, so a
     * new thread will be constructed. This policy avoids lockups when
     * handling sets of requests that might have internal dependencies.
     * Direct handoffs generally require unbounded maximumPoolSizes to
     * avoid rejection of new submitted tasks. This in turn admits the
     * possibility of unbounded thread growth when commands continue to
     * arrive on average faster than they can be processed.  </li>
     *
     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
     * example a {@link LinkedBlockingQueue} without a predefined
     * capacity) will cause new tasks to wait in the queue when all
     * corePoolSize threads are busy. Thus, no more than corePoolSize
     * threads will ever be created. (And the value of the maximumPoolSize
     * therefore doesn't have any effect.)  This may be appropriate when
     * each task is completely independent of others, so tasks cannot
     * affect each others execution; for example, in a web page server.
     * While this style of queuing can be useful in smoothing out
     * transient bursts of requests, it admits the possibility of
     * unbounded work queue growth when commands continue to arrive on
     * average faster than they can be processed.  </li>
     *
     * <li><em>Bounded queues.</em> A bounded queue (for example, an
     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
     * used with finite maximumPoolSizes, but can be more difficult to
     * tune and control.  Queue sizes and maximum pool sizes may be traded
     * off for each other: Using large queues and small pools minimizes
     * CPU usage, OS resources, and context-switching overhead, but can
     * lead to artificially low throughput.  If tasks frequently block (for
     * example if they are I/O bound), a system may be able to schedule
     * time for more threads than you otherwise allow. Use of small queues
     * generally requires larger pool sizes, which keeps CPUs busier but
     * may encounter unacceptable scheduling overhead, which also
     * decreases throughput.  </li>
     *
     * </ol>
     *
     * </dd>
     *
     * <dt>Rejected tasks</dt>
     *
     * <dd> New tasks submitted in method {@link #execute} will be
     * <em>rejected</em> when the Executor has been shut down, and also
     * when the Executor uses finite bounds for both maximum threads and
     * work queue capacity, and is saturated.  In either case, the {@code
     * execute} method invokes the {@link
     * RejectedExecutionHandler#rejectedExecution} method of its {@link
     * RejectedExecutionHandler}.  Four predefined handler policies are
     * provided:
     *
     * <ol>
     *
     * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
     * handler throws a runtime {@link RejectedExecutionException} upon
     * rejection. </li>
     *
     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
     * that invokes {@code execute} itself runs the task. This provides a
     * simple feedback control mechanism that will slow down the rate that
     * new tasks are submitted. </li>
     *
     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
     * cannot be executed is simply dropped.  </li>
     *
     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
     * executor is not shut down, the task at the head of the work queue
     * is dropped, and then execution is retried (which can fail again,
     * causing this to be repeated.) </li>
     *
     * </ol>
     *
     * It is possible to define and use other kinds of {@link
     * RejectedExecutionHandler} classes. Doing so requires some care
     * especially when policies are designed to work only under particular
     * capacity or queuing policies. </dd>
     *
     * <dt>Hook methods</dt>
     *
     * <dd>This class provides {@code protected} overridable {@link
     * #beforeExecute} and {@link #afterExecute} methods that are called
     * before and after execution of each task.  These can be used to
     * manipulate the execution environment; for example, reinitializing
     * ThreadLocals, gathering statistics, or adding log
     * entries. Additionally, method {@link #terminated} can be overridden
     * to perform any special processing that needs to be done once the
     * Executor has fully terminated.
     *
     * <p>If hook or callback methods throw exceptions, internal worker
     * threads may in turn fail and abruptly terminate.</dd>
     *
     * <dt>Queue maintenance</dt>
     *
     * <dd> Method {@link #getQueue} allows access to the work queue for
     * purposes of monitoring and debugging.  Use of this method for any
     * other purpose is strongly discouraged.  Two supplied methods,
     * {@link #remove} and {@link #purge} are available to assist in
     * storage reclamation when large numbers of queued tasks become
     * cancelled.</dd>
     *
     * <dt>Finalization</dt>
     *
     * <dd> A pool that is no longer referenced in a program <em>AND</em>
     * has no remaining threads will be {@code shutdown} automatically. If
     * you would like to ensure that unreferenced pools are reclaimed even
     * if users forget to call {@link #shutdown}, then you must arrange
     * that unused threads eventually die, by setting appropriate
     * keep-alive times, using a lower bound of zero core threads and/or
     * setting {@link #allowCoreThreadTimeOut(boolean)}.  </dd>
     *
     * </dl>
     *
     * <p> <b>Extension example</b>. Most extensions of this class
     * override one or more of the protected hook methods. For example,
     * here is a subclass that adds a simple pause/resume feature:
     *
     *  <pre> {@code
     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
     *   private boolean isPaused;
     *   private ReentrantLock pauseLock = new ReentrantLock();
     *   private Condition unpaused = pauseLock.newCondition();
     *
     *   public PausableThreadPoolExecutor(...) { super(...); }
     *
     *   protected void beforeExecute(Thread t, Runnable r) {
     *     super.beforeExecute(t, r);
     *     pauseLock.lock();
     *     try {
     *       while (isPaused) unpaused.await();
     *     } catch (InterruptedException ie) {
     *       t.interrupt();
     *     } finally {
     *       pauseLock.unlock();
     *     }
     *   }
     *
     *   public void pause() {
     *     pauseLock.lock();
     *     try {
     *       isPaused = true;
     *     } finally {
     *       pauseLock.unlock();
     *     }
     *   }
     *
     *   public void resume() {
     *     pauseLock.lock();
     *     try {
     *       isPaused = false;
     *       unpaused.signalAll();
     *     } finally {
     *       pauseLock.unlock();
     *     }
     *   }
     * }}</pre>
     *
     * @since 1.5
     * @author Doug Lea
     */
    public class ThreadPoolExecutor extends AbstractExecutorService {
        /**
         * The main pool control state, ctl, is an atomic integer packing
         * two conceptual fields
         *   workerCount, indicating the effective number of threads
         *   runState,    indicating whether running, shutting down etc
         *
         * In order to pack them into one int, we limit workerCount to
         * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
         * billion) otherwise representable. If this is ever an issue in
         * the future, the variable can be changed to be an AtomicLong,
         * and the shift/mask constants below adjusted. But until the need
         * arises, this code is a bit faster and simpler using an int.
         *
         * The workerCount is the number of workers that have been
         * permitted to start and not permitted to stop.  The value may be
         * transiently different from the actual number of live threads,
         * for example when a ThreadFactory fails to create a thread when
         * asked, and when exiting threads are still performing
         * bookkeeping before terminating. The user-visible pool size is
         * reported as the current size of the workers set.
         *
         * The runState provides the main lifecyle control, taking on values:
         *
         *   RUNNING:  Accept new tasks and process queued tasks
         *   SHUTDOWN: Don't accept new tasks, but process queued tasks
         *   STOP:     Don't accept new tasks, don't process queued tasks,
         *             and interrupt in-progress tasks
         *   TIDYING:  All tasks have terminated, workerCount is zero,
         *             the thread transitioning to state TIDYING
         *             will run the terminated() hook method
         *   TERMINATED: terminated() has completed
         *
         * The numerical order among these values matters, to allow
         * ordered comparisons. The runState monotonically increases over
         * time, but need not hit each state. The transitions are:
         *
         * RUNNING -> SHUTDOWN
         *    On invocation of shutdown(), perhaps implicitly in finalize()
         * (RUNNING or SHUTDOWN) -> STOP
         *    On invocation of shutdownNow()
         * SHUTDOWN -> TIDYING
         *    When both queue and pool are empty
         * STOP -> TIDYING
         *    When pool is empty
         * TIDYING -> TERMINATED
         *    When the terminated() hook method has completed
         *
         * Threads waiting in awaitTermination() will return when the
         * state reaches TERMINATED.
         *
         * Detecting the transition from SHUTDOWN to TIDYING is less
         * straightforward than you'd like because the queue may become
         * empty after non-empty and vice versa during SHUTDOWN state, but
         * we can only terminate if, after seeing that it is empty, we see
         * that workerCount is 0 (which sometimes entails a recheck -- see
         * below).
         */
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    
        /*
         * Bit field accessors that don't require unpacking ctl.
         * These depend on the bit layout and on workerCount being never negative.
         */
    
        private static boolean runStateLessThan(int c, int s) {
            return c < s;
        }
    
        private static boolean runStateAtLeast(int c, int s) {
            return c >= s;
        }
    
        private static boolean isRunning(int c) {
            return c < SHUTDOWN;
        }
    
        /**
         * Attempt to CAS-increment the workerCount field of ctl.
         */
        private boolean compareAndIncrementWorkerCount(int expect) {
            return ctl.compareAndSet(expect, expect + 1);
        }
    
        /**
         * Attempt to CAS-decrement the workerCount field of ctl.
         */
        private boolean compareAndDecrementWorkerCount(int expect) {
            return ctl.compareAndSet(expect, expect - 1);
        }
    
        /**
         * Decrements the workerCount field of ctl. This is called only on
         * abrupt termination of a thread (see processWorkerExit). Other
         * decrements are performed within getTask.
         */
        private void decrementWorkerCount() {
            do {} while (! compareAndDecrementWorkerCount(ctl.get()));
        }
    
        /**
         * The queue used for holding tasks and handing off to worker
         * threads.  We do not require that workQueue.poll() returning
         * null necessarily means that workQueue.isEmpty(), so rely
         * solely on isEmpty to see if the queue is empty (which we must
         * do for example when deciding whether to transition from
         * SHUTDOWN to TIDYING).  This accommodates special-purpose
         * queues such as DelayQueues for which poll() is allowed to
         * return null even if it may later return non-null when delays
         * expire.
         */
        private final BlockingQueue<Runnable> workQueue;
    
        /**
         * Lock held on access to workers set and related bookkeeping.
         * While we could use a concurrent set of some sort, it turns out
         * to be generally preferable to use a lock. Among the reasons is
         * that this serializes interruptIdleWorkers, which avoids
         * unnecessary interrupt storms, especially during shutdown.
         * Otherwise exiting threads would concurrently interrupt those
         * that have not yet interrupted. It also simplifies some of the
         * associated statistics bookkeeping of largestPoolSize etc. We
         * also hold mainLock on shutdown and shutdownNow, for the sake of
         * ensuring workers set is stable while separately checking
         * permission to interrupt and actually interrupting.
         */
        private final ReentrantLock mainLock = new ReentrantLock();
    
        /**
         * Set containing all worker threads in pool. Accessed only when
         * holding mainLock.
         */
        private final HashSet<Worker> workers = new HashSet<Worker>();
    
        /**
         * Wait condition to support awaitTermination
         */
        private final Condition termination = mainLock.newCondition();
    
        /**
         * Tracks largest attained pool size. Accessed only under
         * mainLock.
         */
        private int largestPoolSize;
    
        /**
         * Counter for completed tasks. Updated only on termination of
         * worker threads. Accessed only under mainLock.
         */
        private long completedTaskCount;
    
        /*
         * All user control parameters are declared as volatiles so that
         * ongoing actions are based on freshest values, but without need
         * for locking, since no internal invariants depend on them
         * changing synchronously with respect to other actions.
         */
    
        /**
         * Factory for new threads. All threads are created using this
         * factory (via method addWorker).  All callers must be prepared
         * for addWorker to fail, which may reflect a system or user's
         * policy limiting the number of threads.  Even though it is not
         * treated as an error, failure to create threads may result in
         * new tasks being rejected or existing ones remaining stuck in
         * the queue.
         *
         * We go further and preserve pool invariants even in the face of
         * errors such as OutOfMemoryError, that might be thrown while
         * trying to create threads.  Such errors are rather common due to
         * the need to allocate a native stack in Thread#start, and users
         * will want to perform clean pool shutdown to clean up.  There
         * will likely be enough memory available for the cleanup code to
         * complete without encountering yet another OutOfMemoryError.
         */
        private volatile ThreadFactory threadFactory;
    
        /**
         * Handler called when saturated or shutdown in execute.
         */
        private volatile RejectedExecutionHandler handler;
    
        /**
         * Timeout in nanoseconds for idle threads waiting for work.
         * Threads use this timeout when there are more than corePoolSize
         * present or if allowCoreThreadTimeOut. Otherwise they wait
         * forever for new work.
         */
        private volatile long keepAliveTime;
    
        /**
         * If false (default), core threads stay alive even when idle.
         * If true, core threads use keepAliveTime to time out waiting
         * for work.
         */
        private volatile boolean allowCoreThreadTimeOut;
    
        /**
         * Core pool size is the minimum number of workers to keep alive
         * (and not allow to time out etc) unless allowCoreThreadTimeOut
         * is set, in which case the minimum is zero.
         */
        private volatile int corePoolSize;
    
        /**
         * Maximum pool size. Note that the actual maximum is internally
         * bounded by CAPACITY.
         */
        private volatile int maximumPoolSize;
    
        /**
         * The default rejected execution handler
         */
        private static final RejectedExecutionHandler defaultHandler =
            new AbortPolicy();
    
        /**
         * Permission required for callers of shutdown and shutdownNow.
         * We additionally require (see checkShutdownAccess) that callers
         * have permission to actually interrupt threads in the worker set
         * (as governed by Thread.interrupt, which relies on
         * ThreadGroup.checkAccess, which in turn relies on
         * SecurityManager.checkAccess). Shutdowns are attempted only if
         * these checks pass.
         *
         * All actual invocations of Thread.interrupt (see
         * interruptIdleWorkers and interruptWorkers) ignore
         * SecurityExceptions, meaning that the attempted interrupts
         * silently fail. In the case of shutdown, they should not fail
         * unless the SecurityManager has inconsistent policies, sometimes
         * allowing access to a thread and sometimes not. In such cases,
         * failure to actually interrupt threads may disable or delay full
         * termination. Other uses of interruptIdleWorkers are advisory,
         * and failure to actually interrupt will merely delay response to
         * configuration changes so is not handled exceptionally.
         */
        private static final RuntimePermission shutdownPerm =
            new RuntimePermission("modifyThread");
    
        /**
         * Class Worker mainly maintains interrupt control state for
         * threads running tasks, along with other minor bookkeeping.
         * This class opportunistically extends AbstractQueuedSynchronizer
         * to simplify acquiring and releasing a lock surrounding each
         * task execution.  This protects against interrupts that are
         * intended to wake up a worker thread waiting for a task from
         * instead interrupting a task being run.  We implement a simple
         * non-reentrant mutual exclusion lock rather than use
         * ReentrantLock because we do not want worker tasks to be able to
         * reacquire the lock when they invoke pool control methods like
         * setCorePoolSize.  Additionally, to suppress interrupts until
         * the thread actually starts running tasks, we initialize lock
         * state to a negative value, and clear it upon start (in
         * runWorker).
         */
        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    
        /*
         * Methods for setting control state
         */
    
        /**
         * Transitions runState to given target, or leaves it alone if
         * already at least the given target.
         *
         * @param targetState the desired state, either SHUTDOWN or STOP
         *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
         */
        private void advanceRunState(int targetState) {
            for (;;) {
                int c = ctl.get();
                if (runStateAtLeast(c, targetState) ||
                    ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                    break;
            }
        }
    
        /**
         * Transitions to TERMINATED state if either (SHUTDOWN and pool
         * and queue empty) or (STOP and pool empty).  If otherwise
         * eligible to terminate but workerCount is nonzero, interrupts an
         * idle worker to ensure that shutdown signals propagate. This
         * method must be called following any action that might make
         * termination possible -- reducing worker count or removing tasks
         * from the queue during shutdown. The method is non-private to
         * allow access from ScheduledThreadPoolExecutor.
         */
        final void tryTerminate() {
            for (;;) {
                int c = ctl.get();
                if (isRunning(c) ||
                    runStateAtLeast(c, TIDYING) ||
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                    return;
                if (workerCountOf(c) != 0) { // Eligible to terminate
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
    
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                        try {
                            terminated();
                        } finally {
                            ctl.set(ctlOf(TERMINATED, 0));
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }
    
        /*
         * Methods for controlling interrupts to worker threads.
         */
    
        /**
         * If there is a security manager, makes sure caller has
         * permission to shut down threads in general (see shutdownPerm).
         * If this passes, additionally makes sure the caller is allowed
         * to interrupt each worker thread. This might not be true even if
         * first check passed, if the SecurityManager treats some threads
         * specially.
         */
        private void checkShutdownAccess() {
            SecurityManager security = System.getSecurityManager();
            if (security != null) {
                security.checkPermission(shutdownPerm);
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    for (Worker w : workers)
                        security.checkAccess(w.thread);
                } finally {
                    mainLock.unlock();
                }
            }
        }
    
        /**
         * Interrupts all threads, even if active. Ignores SecurityExceptions
         * (in which case some threads may remain uninterrupted).
         */
        private void interruptWorkers() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers)
                    w.interruptIfStarted();
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Interrupts threads that might be waiting for tasks (as
         * indicated by not being locked) so they can check for
         * termination or configuration changes. Ignores
         * SecurityExceptions (in which case some threads may remain
         * uninterrupted).
         *
         * @param onlyOne If true, interrupt at most one worker. This is
         * called only from tryTerminate when termination is otherwise
         * enabled but there are still other workers.  In this case, at
         * most one waiting worker is interrupted to propagate shutdown
         * signals in case all threads are currently waiting.
         * Interrupting any arbitrary thread ensures that newly arriving
         * workers since shutdown began will also eventually exit.
         * To guarantee eventual termination, it suffices to always
         * interrupt only one idle worker, but shutdown() interrupts all
         * idle workers so that redundant workers exit promptly, not
         * waiting for a straggler task to finish.
         */
        private void interruptIdleWorkers(boolean onlyOne) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers) {
                    Thread t = w.thread;
                    if (!t.isInterrupted() && w.tryLock()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            w.unlock();
                        }
                    }
                    if (onlyOne)
                        break;
                }
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Common form of interruptIdleWorkers, to avoid having to
         * remember what the boolean argument means.
         */
        private void interruptIdleWorkers() {
            interruptIdleWorkers(false);
        }
    
        private static final boolean ONLY_ONE = true;
    
        /*
         * Misc utilities, most of which are also exported to
         * ScheduledThreadPoolExecutor
         */
    
        /**
         * Invokes the rejected execution handler for the given command.
         * Package-protected for use by ScheduledThreadPoolExecutor.
         */
        final void reject(Runnable command) {
            handler.rejectedExecution(command, this);
        }
    
        /**
         * Performs any further cleanup following run state transition on
         * invocation of shutdown.  A no-op here, but used by
         * ScheduledThreadPoolExecutor to cancel delayed tasks.
         */
        void onShutdown() {
        }
    
        /**
         * State check needed by ScheduledThreadPoolExecutor to
         * enable running tasks during shutdown.
         *
         * @param shutdownOK true if should return true if SHUTDOWN
         */
        final boolean isRunningOrShutdown(boolean shutdownOK) {
            int rs = runStateOf(ctl.get());
            return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
        }
    
        /**
         * Drains the task queue into a new list, normally using
         * drainTo. But if the queue is a DelayQueue or any other kind of
         * queue for which poll or drainTo may fail to remove some
         * elements, it deletes them one by one.
         */
        private List<Runnable> drainQueue() {
            BlockingQueue<Runnable> q = workQueue;
            List<Runnable> taskList = new ArrayList<Runnable>();
            q.drainTo(taskList);
            if (!q.isEmpty()) {
                for (Runnable r : q.toArray(new Runnable[0])) {
                    if (q.remove(r))
                        taskList.add(r);
                }
            }
            return taskList;
        }
    
        /*
         * Methods for creating, running and cleaning up after workers
         */
    
        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread#start), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                final ReentrantLock mainLock = this.mainLock;
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int c = ctl.get();
                        int rs = runStateOf(c);
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    
        /**
         * Rolls back the worker thread creation.
         * - removes worker from workers, if present
         * - decrements worker count
         * - rechecks for termination, in case the existence of this
         *   worker was holding up termination
         */
        private void addWorkerFailed(Worker w) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (w != null)
                    workers.remove(w);
                decrementWorkerCount();
                tryTerminate();
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Performs cleanup and bookkeeping for a dying worker. Called
         * only from worker threads. Unless completedAbruptly is set,
         * assumes that workerCount has already been adjusted to account
         * for exit.  This method removes thread from worker set, and
         * possibly terminates the pool or replaces the worker if either
         * it exited due to user task exception or if fewer than
         * corePoolSize workers are running or queue is non-empty but
         * there are no workers.
         *
         * @param w the worker
         * @param completedAbruptly if the worker died due to user exception
         */
        private void processWorkerExit(Worker w, boolean completedAbruptly) {
            if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
                decrementWorkerCount();
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                completedTaskCount += w.completedTasks;
                workers.remove(w);
            } finally {
                mainLock.unlock();
            }
    
            tryTerminate();
    
            int c = ctl.get();
            if (runStateLessThan(c, STOP)) {
                if (!completedAbruptly) {
                    int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                    if (min == 0 && ! workQueue.isEmpty())
                        min = 1;
                    if (workerCountOf(c) >= min)
                        return; // replacement not needed
                }
                addWorker(null, false);
            }
        }
    
        /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                boolean timed;      // Are workers subject to culling?
    
                for (;;) {
                    int wc = workerCountOf(c);
                    timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                    if (wc <= maximumPoolSize && ! (timedOut && timed))
                        break;
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
    
                try {
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    
        /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and
         * clearInterruptsForTaskRun called to ensure that unless pool is
         * stopping, this thread does not have its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to
         * afterExecute. We separately handle RuntimeException, Error
         * (both of which the specs guarantee that we trap) and arbitrary
         * Throwables.  Because we cannot rethrow Throwables within
         * Runnable.run, we wrap them within Errors on the way out (to the
         * thread's UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    
        // Public constructors and methods
    
        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters and default thread factory and rejected execution handler.
         * It may be more convenient to use one of the {@link Executors} factory
         * methods instead of this general purpose constructor.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), defaultHandler);
        }
    
        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters and default rejected execution handler.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 threadFactory, defaultHandler);
        }
    
        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters and default thread factory.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  RejectedExecutionHandler handler) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), handler);
        }
    
        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    
        /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    
        /**
         * Initiates an orderly shutdown in which previously submitted
         * tasks are executed, but no new tasks will be accepted.
         * Invocation has no additional effect if already shut down.
         *
         * <p>This method does not wait for previously submitted tasks to
         * complete execution.  Use {@link #awaitTermination awaitTermination}
         * to do that.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                advanceRunState(SHUTDOWN);
                interruptIdleWorkers();
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
        }
    
        /**
         * Attempts to stop all actively executing tasks, halts the
         * processing of waiting tasks, and returns a list of the tasks
         * that were awaiting execution. These tasks are drained (removed)
         * from the task queue upon return from this method.
         *
         * <p>This method does not wait for actively executing tasks to
         * terminate.  Use {@link #awaitTermination awaitTermination} to
         * do that.
         *
         * <p>There are no guarantees beyond best-effort attempts to stop
         * processing actively executing tasks.  This implementation
         * cancels tasks via {@link Thread#interrupt}, so any task that
         * fails to respond to interrupts may never terminate.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                advanceRunState(STOP);
                interruptWorkers();
                tasks = drainQueue();
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }
    
        public boolean isShutdown() {
            return ! isRunning(ctl.get());
        }
    
        /**
         * Returns true if this executor is in the process of terminating
         * after {@link #shutdown} or {@link #shutdownNow} but has not
         * completely terminated.  This method may be useful for
         * debugging. A return of {@code true} reported a sufficient
         * period after shutdown may indicate that submitted tasks have
         * ignored or suppressed interruption, causing this executor not
         * to properly terminate.
         *
         * @return true if terminating but not yet terminated
         */
        public boolean isTerminating() {
            int c = ctl.get();
            return ! isRunning(c) && runStateLessThan(c, TERMINATED);
        }
    
        public boolean isTerminated() {
            return runStateAtLeast(ctl.get(), TERMINATED);
        }
    
        public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (;;) {
                    if (runStateAtLeast(ctl.get(), TERMINATED))
                        return true;
                    if (nanos <= 0)
                        return false;
                    nanos = termination.awaitNanos(nanos);
                }
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Invokes {@code shutdown} when this executor is no longer
         * referenced and it has no threads.
         */
        protected void finalize() {
            shutdown();
        }
    
        /**
         * Sets the thread factory used to create new threads.
         *
         * @param threadFactory the new thread factory
         * @throws NullPointerException if threadFactory is null
         * @see #getThreadFactory
         */
        public void setThreadFactory(ThreadFactory threadFactory) {
            if (threadFactory == null)
                throw new NullPointerException();
            this.threadFactory = threadFactory;
        }
    
        /**
         * Returns the thread factory used to create new threads.
         *
         * @return the current thread factory
         * @see #setThreadFactory
         */
        public ThreadFactory getThreadFactory() {
            return threadFactory;
        }
    
        /**
         * Sets a new handler for unexecutable tasks.
         *
         * @param handler the new handler
         * @throws NullPointerException if handler is null
         * @see #getRejectedExecutionHandler
         */
        public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
            if (handler == null)
                throw new NullPointerException();
            this.handler = handler;
        }
    
        /**
         * Returns the current handler for unexecutable tasks.
         *
         * @return the current handler
         * @see #setRejectedExecutionHandler
         */
        public RejectedExecutionHandler getRejectedExecutionHandler() {
            return handler;
        }
    
        /**
         * Sets the core number of threads.  This overrides any value set
         * in the constructor.  If the new value is smaller than the
         * current value, excess existing threads will be terminated when
         * they next become idle.  If larger, new threads will, if needed,
         * be started to execute any queued tasks.
         *
         * @param corePoolSize the new core size
         * @throws IllegalArgumentException if {@code corePoolSize < 0}
         * @see #getCorePoolSize
         */
        public void setCorePoolSize(int corePoolSize) {
            if (corePoolSize < 0)
                throw new IllegalArgumentException();
            int delta = corePoolSize - this.corePoolSize;
            this.corePoolSize = corePoolSize;
            if (workerCountOf(ctl.get()) > corePoolSize)
                interruptIdleWorkers();
            else if (delta > 0) {
                // We don't really know how many new threads are "needed".
                // As a heuristic, prestart enough new workers (up to new
                // core size) to handle the current number of tasks in
                // queue, but stop if queue becomes empty while doing so.
                int k = Math.min(delta, workQueue.size());
                while (k-- > 0 && addWorker(null, true)) {
                    if (workQueue.isEmpty())
                        break;
                }
            }
        }
    
        /**
         * Returns the core number of threads.
         *
         * @return the core number of threads
         * @see #setCorePoolSize
         */
        public int getCorePoolSize() {
            return corePoolSize;
        }
    
        /**
         * Starts a core thread, causing it to idly wait for work. This
         * overrides the default policy of starting core threads only when
         * new tasks are executed. This method will return {@code false}
         * if all core threads have already been started.
         *
         * @return {@code true} if a thread was started
         */
        public boolean prestartCoreThread() {
            return workerCountOf(ctl.get()) < corePoolSize &&
                addWorker(null, true);
        }
    
        /**
         * Same as prestartCoreThread except arranges that at least one
         * thread is started even if corePoolSize is 0.
         */
        void ensurePrestart() {
            int wc = workerCountOf(ctl.get());
            if (wc < corePoolSize)
                addWorker(null, true);
            else if (wc == 0)
                addWorker(null, false);
        }
    
        /**
         * Starts all core threads, causing them to idly wait for work. This
         * overrides the default policy of starting core threads only when
         * new tasks are executed.
         *
         * @return the number of threads started
         */
        public int prestartAllCoreThreads() {
            int n = 0;
            while (addWorker(null, true))
                ++n;
            return n;
        }
    
        /**
         * Returns true if this pool allows core threads to time out and
         * terminate if no tasks arrive within the keepAlive time, being
         * replaced if needed when new tasks arrive. When true, the same
         * keep-alive policy applying to non-core threads applies also to
         * core threads. When false (the default), core threads are never
         * terminated due to lack of incoming tasks.
         *
         * @return {@code true} if core threads are allowed to time out,
         *         else {@code false}
         *
         * @since 1.6
         */
        public boolean allowsCoreThreadTimeOut() {
            return allowCoreThreadTimeOut;
        }
    
        /**
         * Sets the policy governing whether core threads may time out and
         * terminate if no tasks arrive within the keep-alive time, being
         * replaced if needed when new tasks arrive. When false, core
         * threads are never terminated due to lack of incoming
         * tasks. When true, the same keep-alive policy applying to
         * non-core threads applies also to core threads. To avoid
         * continual thread replacement, the keep-alive time must be
         * greater than zero when setting {@code true}. This method
         * should in general be called before the pool is actively used.
         *
         * @param value {@code true} if should time out, else {@code false}
         * @throws IllegalArgumentException if value is {@code true}
         *         and the current keep-alive time is not greater than zero
         *
         * @since 1.6
         */
        public void allowCoreThreadTimeOut(boolean value) {
            if (value && keepAliveTime <= 0)
                throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
            if (value != allowCoreThreadTimeOut) {
                allowCoreThreadTimeOut = value;
                if (value)
                    interruptIdleWorkers();
            }
        }
    
        /**
         * Sets the maximum allowed number of threads. This overrides any
         * value set in the constructor. If the new value is smaller than
         * the current value, excess existing threads will be
         * terminated when they next become idle.
         *
         * @param maximumPoolSize the new maximum
         * @throws IllegalArgumentException if the new maximum is
         *         less than or equal to zero, or
         *         less than the {@linkplain #getCorePoolSize core pool size}
         * @see #getMaximumPoolSize
         */
        public void setMaximumPoolSize(int maximumPoolSize) {
            if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
                throw new IllegalArgumentException();
            this.maximumPoolSize = maximumPoolSize;
            if (workerCountOf(ctl.get()) > maximumPoolSize)
                interruptIdleWorkers();
        }
    
        /**
         * Returns the maximum allowed number of threads.
         *
         * @return the maximum allowed number of threads
         * @see #setMaximumPoolSize
         */
        public int getMaximumPoolSize() {
            return maximumPoolSize;
        }
    
        /**
         * Sets the time limit for which threads may remain idle before
         * being terminated.  If there are more than the core number of
         * threads currently in the pool, after waiting this amount of
         * time without processing a task, excess threads will be
         * terminated.  This overrides any value set in the constructor.
         *
         * @param time the time to wait.  A time value of zero will cause
         *        excess threads to terminate immediately after executing tasks.
         * @param unit the time unit of the {@code time} argument
         * @throws IllegalArgumentException if {@code time} less than zero or
         *         if {@code time} is zero and {@code allowsCoreThreadTimeOut}
         * @see #getKeepAliveTime
         */
        public void setKeepAliveTime(long time, TimeUnit unit) {
            if (time < 0)
                throw new IllegalArgumentException();
            if (time == 0 && allowsCoreThreadTimeOut())
                throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
            long keepAliveTime = unit.toNanos(time);
            long delta = keepAliveTime - this.keepAliveTime;
            this.keepAliveTime = keepAliveTime;
            if (delta < 0)
                interruptIdleWorkers();
        }
    
        /**
         * Returns the thread keep-alive time, which is the amount of time
         * that threads in excess of the core pool size may remain
         * idle before being terminated.
         *
         * @param unit the desired time unit of the result
         * @return the time limit
         * @see #setKeepAliveTime
         */
        public long getKeepAliveTime(TimeUnit unit) {
            return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
        }
    
        /* User-level queue utilities */
    
        /**
         * Returns the task queue used by this executor. Access to the
         * task queue is intended primarily for debugging and monitoring.
         * This queue may be in active use.  Retrieving the task queue
         * does not prevent queued tasks from executing.
         *
         * @return the task queue
         */
        public BlockingQueue<Runnable> getQueue() {
            return workQueue;
        }
    
        /**
         * Removes this task from the executor's internal queue if it is
         * present, thus causing it not to be run if it has not already
         * started.
         *
         * <p> This method may be useful as one part of a cancellation
         * scheme.  It may fail to remove tasks that have been converted
         * into other forms before being placed on the internal queue. For
         * example, a task entered using {@code submit} might be
         * converted into a form that maintains {@code Future} status.
         * However, in such cases, method {@link #purge} may be used to
         * remove those Futures that have been cancelled.
         *
         * @param task the task to remove
         * @return true if the task was removed
         */
        public boolean remove(Runnable task) {
            boolean removed = workQueue.remove(task);
            tryTerminate(); // In case SHUTDOWN and now empty
            return removed;
        }
    
        /**
         * Tries to remove from the work queue all {@link Future}
         * tasks that have been cancelled. This method can be useful as a
         * storage reclamation operation, that has no other impact on
         * functionality. Cancelled tasks are never executed, but may
         * accumulate in work queues until worker threads can actively
         * remove them. Invoking this method instead tries to remove them now.
         * However, this method may fail to remove tasks in
         * the presence of interference by other threads.
         */
        public void purge() {
            final BlockingQueue<Runnable> q = workQueue;
            try {
                Iterator<Runnable> it = q.iterator();
                while (it.hasNext()) {
                    Runnable r = it.next();
                    if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
                        it.remove();
                }
            } catch (ConcurrentModificationException fallThrough) {
                // Take slow path if we encounter interference during traversal.
                // Make copy for traversal and call remove for cancelled entries.
                // The slow path is more likely to be O(N*N).
                for (Object r : q.toArray())
                    if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
                        q.remove(r);
            }
    
            tryTerminate(); // In case SHUTDOWN and now empty
        }
    
        /* Statistics */
    
        /**
         * Returns the current number of threads in the pool.
         *
         * @return the number of threads
         */
        public int getPoolSize() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Remove rare and surprising possibility of
                // isTerminated() && getPoolSize() > 0
                return runStateAtLeast(ctl.get(), TIDYING) ? 0
                    : workers.size();
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Returns the approximate number of threads that are actively
         * executing tasks.
         *
         * @return the number of threads
         */
        public int getActiveCount() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                int n = 0;
                for (Worker w : workers)
                    if (w.isLocked())
                        ++n;
                return n;
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Returns the largest number of threads that have ever
         * simultaneously been in the pool.
         *
         * @return the number of threads
         */
        public int getLargestPoolSize() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                return largestPoolSize;
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Returns the approximate total number of tasks that have ever been
         * scheduled for execution. Because the states of tasks and
         * threads may change dynamically during computation, the returned
         * value is only an approximation.
         *
         * @return the number of tasks
         */
        public long getTaskCount() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                long n = completedTaskCount;
                for (Worker w : workers) {
                    n += w.completedTasks;
                    if (w.isLocked())
                        ++n;
                }
                return n + workQueue.size();
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Returns the approximate total number of tasks that have
         * completed execution. Because the states of tasks and threads
         * may change dynamically during computation, the returned value
         * is only an approximation, but one that does not ever decrease
         * across successive calls.
         *
         * @return the number of tasks
         */
        public long getCompletedTaskCount() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                long n = completedTaskCount;
                for (Worker w : workers)
                    n += w.completedTasks;
                return n;
            } finally {
                mainLock.unlock();
            }
        }
    
        /**
         * Returns a string identifying this pool, as well as its state,
         * including indications of run state and estimated worker and
         * task counts.
         *
         * @return a string identifying this pool, as well as its state
         */
        public String toString() {
            long ncompleted;
            int nworkers, nactive;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                ncompleted = completedTaskCount;
                nactive = 0;
                nworkers = workers.size();
                for (Worker w : workers) {
                    ncompleted += w.completedTasks;
                    if (w.isLocked())
                        ++nactive;
                }
            } finally {
                mainLock.unlock();
            }
            int c = ctl.get();
            String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
                         (runStateAtLeast(c, TERMINATED) ? "Terminated" :
                          "Shutting down"));
            return super.toString() +
                "[" + rs +
                ", pool size = " + nworkers +
                ", active threads = " + nactive +
                ", queued tasks = " + workQueue.size() +
                ", completed tasks = " + ncompleted +
                "]";
        }
    
        /* Extension hooks */
    
        /**
         * Method invoked prior to executing the given Runnable in the
         * given thread.  This method is invoked by thread {@code t} that
         * will execute task {@code r}, and may be used to re-initialize
         * ThreadLocals, or to perform logging.
         *
         * <p>This implementation does nothing, but may be customized in
         * subclasses. Note: To properly nest multiple overridings, subclasses
         * should generally invoke {@code super.beforeExecute} at the end of
         * this method.
         *
         * @param t the thread that will run task {@code r}
         * @param r the task that will be executed
         */
        protected void beforeExecute(Thread t, Runnable r) { }
    
        /**
         * Method invoked upon completion of execution of the given Runnable.
         * This method is invoked by the thread that executed the task. If
         * non-null, the Throwable is the uncaught {@code RuntimeException}
         * or {@code Error} that caused execution to terminate abruptly.
         *
         * <p>This implementation does nothing, but may be customized in
         * subclasses. Note: To properly nest multiple overridings, subclasses
         * should generally invoke {@code super.afterExecute} at the
         * beginning of this method.
         *
         * <p><b>Note:</b> When actions are enclosed in tasks (such as
         * {@link FutureTask}) either explicitly or via methods such as
         * {@code submit}, these task objects catch and maintain
         * computational exceptions, and so they do not cause abrupt
         * termination, and the internal exceptions are <em>not</em>
         * passed to this method. If you would like to trap both kinds of
         * failures in this method, you can further probe for such cases,
         * as in this sample subclass that prints either the direct cause
         * or the underlying exception if a task has been aborted:
         *
         *  <pre> {@code
         * class ExtendedExecutor extends ThreadPoolExecutor {
         *   // ...
         *   protected void afterExecute(Runnable r, Throwable t) {
         *     super.afterExecute(r, t);
         *     if (t == null && r instanceof Future<?>) {
         *       try {
         *         Object result = ((Future<?>) r).get();
         *       } catch (CancellationException ce) {
         *           t = ce;
         *       } catch (ExecutionException ee) {
         *           t = ee.getCause();
         *       } catch (InterruptedException ie) {
         *           Thread.currentThread().interrupt(); // ignore/reset
         *       }
         *     }
         *     if (t != null)
         *       System.out.println(t);
         *   }
         * }}</pre>
         *
         * @param r the runnable that has completed
         * @param t the exception that caused termination, or null if
         * execution completed normally
         */
        protected void afterExecute(Runnable r, Throwable t) { }
    
        /**
         * Method invoked when the Executor has terminated.  Default
         * implementation does nothing. Note: To properly nest multiple
         * overridings, subclasses should generally invoke
         * {@code super.terminated} within this method.
         */
        protected void terminated() { }
    
        /* Predefined RejectedExecutionHandlers */
    
        /**
         * A handler for rejected tasks that runs the rejected task
         * directly in the calling thread of the {@code execute} method,
         * unless the executor has been shut down, in which case the task
         * is discarded.
         */
        public static class CallerRunsPolicy implements RejectedExecutionHandler {
            /**
             * Creates a {@code CallerRunsPolicy}.
             */
            public CallerRunsPolicy() { }
    
            /**
             * Executes task r in the caller's thread, unless the executor
             * has been shut down, in which case the task is discarded.
             *
             * @param r the runnable task requested to be executed
             * @param e the executor attempting to execute this task
             */
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
                if (!e.isShutdown()) {
                    r.run();
                }
            }
        }
    
        /**
         * A handler for rejected tasks that throws a
         * {@code RejectedExecutionException}.
         */
        public static class AbortPolicy implements RejectedExecutionHandler {
            /**
             * Creates an {@code AbortPolicy}.
             */
            public AbortPolicy() { }
    
            /**
             * Always throws RejectedExecutionException.
             *
             * @param r the runnable task requested to be executed
             * @param e the executor attempting to execute this task
             * @throws RejectedExecutionException always.
             */
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
                throw new RejectedExecutionException("Task " + r.toString() +
                                                     " rejected from " +
                                                     e.toString());
            }
        }
    
        /**
         * A handler for rejected tasks that silently discards the
         * rejected task.
         */
        public static class DiscardPolicy implements RejectedExecutionHandler {
            /**
             * Creates a {@code DiscardPolicy}.
             */
            public DiscardPolicy() { }
    
            /**
             * Does nothing, which has the effect of discarding task r.
             *
             * @param r the runnable task requested to be executed
             * @param e the executor attempting to execute this task
             */
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            }
        }
    
        /**
         * A handler for rejected tasks that discards the oldest unhandled
         * request and then retries {@code execute}, unless the executor
         * is shut down, in which case the task is discarded.
         */
        public static class DiscardOldestPolicy implements RejectedExecutionHandler {
            /**
             * Creates a {@code DiscardOldestPolicy} for the given executor.
             */
            public DiscardOldestPolicy() { }
    
            /**
             * Obtains and ignores the next task that the executor
             * would otherwise execute, if one is immediately available,
             * and then retries execution of task r, unless the executor
             * is shut down, in which case task r is instead discarded.
             *
             * @param r the runnable task requested to be executed
             * @param e the executor attempting to execute this task
             */
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
                if (!e.isShutdown()) {
                    e.getQueue().poll();
                    e.execute(r);
                }
            }
        }
    }
    View Code

    0. ThreadPoolExecutor简介

    线程池,可以接收用户提交的任务并排队执行,减少为每个任务都创建独立进程的开销(线程创建与销毁的代价太高了)

    1. 接口分析

    ThreadPoolExecutor的继承关系如下图所示

    2. ThreadPoolExecutor构造方法的关键参数解析

        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }

    上面是ThreadPoolExecutor的参数最多的构造方法的源码,我们来分析一下它的传入参数就可以了

    corePoolSize:核心线程池的大小,就是线程池无论如何都会维护这么多个工作线程,即使这些线程都处于idle状态(如果allowCoreThreadTimeOut没被设置),如果工作线程数小于corePoolSize,新加的任务会触发新建工作线程的流程。如果工作线程数不小于corePoolSize,那么新加的任务会被放到workQueue里等待

    maximumPoolSize:线程池的工作线程的最大大小

    keepAliveTime/unit:当线程池中有超过corePoolSize个的工作线程时,如果有工作线程处于idle状态超过这个时间,这个线程会被杀死

    workQueue:阻塞任务队列,当工作线程数不小于corePoolSize时,新加的任务会被放到workQueue中,当workQueue已满的时候(workQueue.offer方法返回false),继续加入的任务会尝试新建工作线程

    threadFactory:工作线程的线程工厂

    handler:当workQueue已满,并且线程池的工作线程数量达到maximumPoolSize时,继续提交的任务会触发RejectedExecutionHandler进行处理

    3. 分析几种经典的线程池

    Executors.newFixedThreadPool

        public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }

    corePoolSize与maximumPoolSize都被设置为同样大小,超时时间为0,workQueue为无界阻塞队列

    也就是说newFixedThreadPool无论如何都会维护nThreads个工作线程,新提交的任务会优先占用这些工作线程。如果工作线程已满,这些任务会被塞进无界的workQueue里等待,直到有工作线程空闲为止。(标准的生产消费者模型)

    也就是说如果提交任务的速度过快,可能会由于workQueue的无限制增长而导致OOM

    Executors.newSingleThreadExecutor

        public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }

    与newFixedThreadPool极其相似,只是可以设置nThreads参数变成了固定的1而已

    也就是说newSingleThreadExecutor只会维护一个工作线程,更多的任务会被放到无界的workQueue里等待,直到工作线程空闲为止

    Executors.newCachedThreadPool

        public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }

    corePoolSize为0,maximumPoolSize为Integer.MAX_VALUE,超时时间为一分钟,workQueue为SynchronousQueue(无界队列,本身不存储元素,只是负责把元素从一个线程传递到另外一个线程)

    可以看出newCachedThreadPool平时不维护工作线程,如果接到任务了,就新建工作线程来处理任务。如果工作线程连续空闲了一分钟,工作线程自动死亡,减少维护的工作线程数。

    通俗的比喻就是富士康,平时不养闲人,如果突然接到大订单了,就临时招聘一大批工人来干活,忙完这一阵,就把他们遣散了。

    4. ThreadPoolExecutor.ctl变量与线程池状态

    ThreadPoolExecutor内部维护了一个AtomicInteger型变量,名为ctl,用于控制线程池的状态

    头3bit用于保存线程池的工作状态,低29bit用来维护线程池的工作线程计数(这样线程的工作线程最多只有2^29-1个,大约5亿个,够用了),修改与查询ctl都会用到位运算

    线程池的工作状态有5种,摘抄注释如下

    *   RUNNING:  Accept new tasks and process queued tasks//线程池正常工作
    * SHUTDOWN: Don't accept new tasks, but process queued tasks//不接受新任务,但是workQueue中的任务还是会继续执行
    * STOP: Don't accept new tasks, don't process queued tasks,//不接受新任务,也不继续执行workQueue中的任务,并且向所有执行中的任务发送中断指令
    * and interrupt in-progress tasks
    * TIDYING: All tasks have terminated, workerCount is zero,//所有任务都已经终结,工作线程数为0,下一步是执行terminated钩子方法
    * the thread transitioning to state TIDYING
    * will run the terminated() hook method
    * TERMINATED: terminated() has completed//terminated方法已经执行完毕

    状态切换原因如下

    * RUNNING -> SHUTDOWN
    * On invocation of shutdown(), perhaps implicitly in finalize()//调用了线程池的shutdown方法
    * (RUNNING or SHUTDOWN) -> STOP
    * On invocation of shutdownNow()//调用了线程池的shutdownNow方法
    * SHUTDOWN -> TIDYING
    * When both queue and pool are empty//workQueue与工作线程都清空了
    * STOP -> TIDYING
    * When pool is empty//工作线程清空了
    * TIDYING -> TERMINATED
    * When the terminated() hook method has completed//terminated方法被执行了
    *
    * Threads waiting in awaitTermination() will return when the
    * state reaches TERMINATED.//线程池的awaitTermination方法,会在线程池的状态切换到TERMINATED后返回

    5. ThreadPoolExecutor.execute方法解析

        /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {//如果工作线程数小于corePoolSize,那么新建工作线程
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }//走到这里说明工作线程数不小于corePollSize,需要把command放到workQueue里了
            if (isRunning(c) && workQueue.offer(command)) {//如果线程池处于运行状态,并且command入队成功
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))//如果入队之后发现线程池刚好关闭了,那还是把这个command出队并执行reject方法
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))//执行到这里,说明要么线程池已经关闭,要么workQueue已满,尝试着新建工作线程来解决问题,如果新建工作线程还是失败(线程池已经关闭,或者工作线程数达到了maximumPoolSize的上限),需要调用reject方法
                reject(command);
        }
    
    
        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread#start), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();//此时线程池的工作线程数
                int rs = runStateOf(c);//此时线程池的工作状态
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&//如果线程池不处于工作状态,拒绝添加新的工作线程。例外情况是线程池处于SHUTDOWN状态,并且workQueue不为空,这样可以尽快处理完毕workQueue里的剩余任务
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);//工作线程数
                    if (wc >= CAPACITY ||//工作线程数超过(2^29)-1了
                        wc >= (core ? corePoolSize : maximumPoolSize))//工作线程数已经超过corePoolSize或者maximumPoolSize了(根据core变量决定)
                        return false;//禁止创建新工作线程
                    if (compareAndIncrementWorkerCount(c))//用cas操作更新工作线程计数器,如果失败则从头重试
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)//如果线程池状态更新,从头重试
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
            //增加工作线程的流程
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                final ReentrantLock mainLock = this.mainLock;
                w = new Worker(firstTask);//新建Worker,内部含有一个工作线程
                final Thread t = w.thread;
                if (t != null) {
                    mainLock.lock();//加锁,保证新建工作线程的过程是线程安全的,因为works是非线程安全的HashSet,并发情况下插入新Worker会有问题
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int c = ctl.get();
                        int rs = runStateOf(c);
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {//确保线程池处于运行状态,或者SHUTDOWN状态但是只是为了处理workQueue里的未完成任务
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);//向HashSet类型的workers中添加新的工作线程
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();//解锁
                    }
                    if (workerAdded) {//如果新加工作线程成功,启动工作线程
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }

    大概意思就是根据线程池的状态(是否处于RUNNING状态,工作线程的数量,workQueue的长度)来决定是新建工作线程,还是将提交的任务直接入队

    如果需要新建工作线程的话,会用到全局锁来保证新建工作线程的操作是线程安全的。

    6. ThreadPoolExecutor.Worker.run方法解析

    ThreadPoolExecutor.Worker继承于AbstractQueuedSynchronizer与Runnable接口,ThreadPoolExecutor.addWorker方法最后调用的t.start()函数,相当于在新起的工作线程里调用对应的ThreadPoolExecutor.Worker.run方法

            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
        /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and
         * clearInterruptsForTaskRun called to ensure that unless pool is
         * stopping, this thread does not have its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to
         * afterExecute. We separately handle RuntimeException, Error
         * (both of which the specs guarantee that we trap) and arbitrary
         * Throwables.  Because we cannot rethrow Throwables within
         * Runnable.run, we wrap them within Errors on the way out (to the
         * thread's UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;//获取Worker的初始任务
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) {//无限尝试获取任务,如果拿不到任务,这个工作线程就自杀了
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);//空方法,供子类实现
                        Throwable thrown = null;
                        try {
                            task.run();//执行任务
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);//空方法,供子类实现
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);//如果线程抛异常退出了,进行一些收尾工作,比方说可能会继续新建工作线程顶上
            }
        }
    
    
        /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {//如果线程池已被结束,且workQueue里的剩余任务无需处理,则杀死当前工作线程
                    decrementWorkerCount();
                    return null;
                }
    
                boolean timed;      // Are workers subject to culling?
    
                for (;;) {
                    int wc = workerCountOf(c);
                    timed = allowCoreThreadTimeOut || wc > corePoolSize;//如果允许核心线程超时,或者现有工作线程数超过了corePoolSize,那么后续从workQueue中poll任务时需要设置超时时间,如果超过超时时间还没拿到任务,杀死当前工作线程
    
                    if (wc <= maximumPoolSize && ! (timedOut && timed))
                        break;
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
    
                try {
                    Runnable r = timed ?//根据前面的检测来判断是否需要设置这个工作线程从workQueue里取任务的超时时间
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;//线程超过限定时间没有拿到任务了,这个线程可能会在后续循环中被杀死
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }

    大概意思是,Worker一旦启动,就会无限轮询workQueue,试图获取新任务并执行

    如果配置了超时时间而且满足超时条件,Worker会自动退出

    如果Worker执行过程中发生了异常,Worker也会自动退出

    Worker退出后会触发名为processWorkerExit的收尾函数,进行最后的收尾工作,比方说如果工作线程是因为异常退出的,会继续调用addWork方法试图创建再创建一个工作线程来顶替自己的工作。

    7. 使用线程池的注意事项

    在使用newFixedThreadPool时,如果生产速度一直大于消费速度,那么会发生任务堆积,等待队列会扩展直到内存耗尽

    这时我们可以采用CallerRunsPolicy,或者自定义RejectedExecutionHandler来阻塞住生产者避免这一现象的发生

    具体可以参见这篇博文《支持生产阻塞的线程池

  • 相关阅读:
    Can't remove netstandard folder from output path (.net standard)
    website项目的reference问题
    The type exists in both DLLs
    git常用配置
    Map dependencies with code maps
    How to check HTML version of any website
    Bootstrap UI 编辑器
    网上职位要求对照
    Use of implicitly declared global variable
    ResolveUrl in external JavaScript file in asp.net project
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7206923.html
Copyright © 2011-2022 走看看