zoukankan      html  css  js  c++  java
  • J.U.C并发框架源码阅读(十六)FutureTask

    基于版本jdk1.7.0_80

    java.util.concurrent.FutureTask

    代码如下

    /*
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    /*
     *
     *
     *
     *
     *
     * Written by Doug Lea with assistance from members of JCP JSR-166
     * Expert Group and released to the public domain, as explained at
     * http://creativecommons.org/publicdomain/zero/1.0/
     */
    
    package java.util.concurrent;
    import java.util.concurrent.locks.LockSupport;
    
    /**
     * A cancellable asynchronous computation.  This class provides a base
     * implementation of {@link Future}, with methods to start and cancel
     * a computation, query to see if the computation is complete, and
     * retrieve the result of the computation.  The result can only be
     * retrieved when the computation has completed; the {@code get}
     * methods will block if the computation has not yet completed.  Once
     * the computation has completed, the computation cannot be restarted
     * or cancelled (unless the computation is invoked using
     * {@link #runAndReset}).
     *
     * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or
     * {@link Runnable} object.  Because {@code FutureTask} implements
     * {@code Runnable}, a {@code FutureTask} can be submitted to an
     * {@link Executor} for execution.
     *
     * <p>In addition to serving as a standalone class, this class provides
     * {@code protected} functionality that may be useful when creating
     * customized task classes.
     *
     * @since 1.5
     * @author Doug Lea
     * @param <V> The result type returned by this FutureTask's {@code get} methods
     */
    public class FutureTask<V> implements RunnableFuture<V> {
        /*
         * Revision notes: This differs from previous versions of this
         * class that relied on AbstractQueuedSynchronizer, mainly to
         * avoid surprising users about retaining interrupt status during
         * cancellation races. Sync control in the current design relies
         * on a "state" field updated via CAS to track completion, along
         * with a simple Treiber stack to hold waiting threads.
         *
         * Style note: As usual, we bypass overhead of using
         * AtomicXFieldUpdaters and instead directly use Unsafe intrinsics.
         */
    
        /**
         * The run state of this task, initially NEW.  The run state
         * transitions to a terminal state only in methods set,
         * setException, and cancel.  During completion, state may take on
         * transient values of COMPLETING (while outcome is being set) or
         * INTERRUPTING (only while interrupting the runner to satisfy a
         * cancel(true)). Transitions from these intermediate to final
         * states use cheaper ordered/lazy writes because values are unique
         * and cannot be further modified.
         *
         * Possible state transitions:
         * NEW -> COMPLETING -> NORMAL
         * NEW -> COMPLETING -> EXCEPTIONAL
         * NEW -> CANCELLED
         * NEW -> INTERRUPTING -> INTERRUPTED
         */
        private volatile int state;
        private static final int NEW          = 0;
        private static final int COMPLETING   = 1;
        private static final int NORMAL       = 2;
        private static final int EXCEPTIONAL  = 3;
        private static final int CANCELLED    = 4;
        private static final int INTERRUPTING = 5;
        private static final int INTERRUPTED  = 6;
    
        /** The underlying callable; nulled out after running */
        private Callable<V> callable;
        /** The result to return or exception to throw from get() */
        private Object outcome; // non-volatile, protected by state reads/writes
        /** The thread running the callable; CASed during run() */
        private volatile Thread runner;
        /** Treiber stack of waiting threads */
        private volatile WaitNode waiters;
    
        /**
         * Returns result or throws exception for completed task.
         *
         * @param s completed state value
         */
        @SuppressWarnings("unchecked")
        private V report(int s) throws ExecutionException {
            Object x = outcome;
            if (s == NORMAL)
                return (V)x;
            if (s >= CANCELLED)
                throw new CancellationException();
            throw new ExecutionException((Throwable)x);
        }
    
        /**
         * Creates a {@code FutureTask} that will, upon running, execute the
         * given {@code Callable}.
         *
         * @param  callable the callable task
         * @throws NullPointerException if the callable is null
         */
        public FutureTask(Callable<V> callable) {
            if (callable == null)
                throw new NullPointerException();
            this.callable = callable;
            this.state = NEW;       // ensure visibility of callable
        }
    
        /**
         * Creates a {@code FutureTask} that will, upon running, execute the
         * given {@code Runnable}, and arrange that {@code get} will return the
         * given result on successful completion.
         *
         * @param runnable the runnable task
         * @param result the result to return on successful completion. If
         * you don't need a particular result, consider using
         * constructions of the form:
         * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
         * @throws NullPointerException if the runnable is null
         */
        public FutureTask(Runnable runnable, V result) {
            this.callable = Executors.callable(runnable, result);
            this.state = NEW;       // ensure visibility of callable
        }
    
        public boolean isCancelled() {
            return state >= CANCELLED;
        }
    
        public boolean isDone() {
            return state != NEW;
        }
    
        public boolean cancel(boolean mayInterruptIfRunning) {
            if (state != NEW)
                return false;
            if (mayInterruptIfRunning) {
                if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))
                    return false;
                Thread t = runner;
                if (t != null)
                    t.interrupt();
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
            }
            else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))
                return false;
            finishCompletion();
            return true;
        }
    
        /**
         * @throws CancellationException {@inheritDoc}
         */
        public V get() throws InterruptedException, ExecutionException {
            int s = state;
            if (s <= COMPLETING)
                s = awaitDone(false, 0L);
            return report(s);
        }
    
        /**
         * @throws CancellationException {@inheritDoc}
         */
        public V get(long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException {
            if (unit == null)
                throw new NullPointerException();
            int s = state;
            if (s <= COMPLETING &&
                (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
                throw new TimeoutException();
            return report(s);
        }
    
        /**
         * Protected method invoked when this task transitions to state
         * {@code isDone} (whether normally or via cancellation). The
         * default implementation does nothing.  Subclasses may override
         * this method to invoke completion callbacks or perform
         * bookkeeping. Note that you can query status inside the
         * implementation of this method to determine whether this task
         * has been cancelled.
         */
        protected void done() { }
    
        /**
         * Sets the result of this future to the given value unless
         * this future has already been set or has been cancelled.
         *
         * <p>This method is invoked internally by the {@link #run} method
         * upon successful completion of the computation.
         *
         * @param v the value
         */
        protected void set(V v) {
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = v;
                UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
                finishCompletion();
            }
        }
    
        /**
         * Causes this future to report an {@link ExecutionException}
         * with the given throwable as its cause, unless this future has
         * already been set or has been cancelled.
         *
         * <p>This method is invoked internally by the {@link #run} method
         * upon failure of the computation.
         *
         * @param t the cause of failure
         */
        protected void setException(Throwable t) {
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = t;
                UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
                finishCompletion();
            }
        }
    
        public void run() {
            if (state != NEW ||
                !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                             null, Thread.currentThread()))
                return;
            try {
                Callable<V> c = callable;
                if (c != null && state == NEW) {
                    V result;
                    boolean ran;
                    try {
                        result = c.call();
                        ran = true;
                    } catch (Throwable ex) {
                        result = null;
                        ran = false;
                        setException(ex);
                    }
                    if (ran)
                        set(result);
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                int s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
        }
    
        /**
         * Executes the computation without setting its result, and then
         * resets this future to initial state, failing to do so if the
         * computation encounters an exception or is cancelled.  This is
         * designed for use with tasks that intrinsically execute more
         * than once.
         *
         * @return true if successfully run and reset
         */
        protected boolean runAndReset() {
            if (state != NEW ||
                !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                             null, Thread.currentThread()))
                return false;
            boolean ran = false;
            int s = state;
            try {
                Callable<V> c = callable;
                if (c != null && s == NEW) {
                    try {
                        c.call(); // don't set result
                        ran = true;
                    } catch (Throwable ex) {
                        setException(ex);
                    }
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
            return ran && s == NEW;
        }
    
        /**
         * Ensures that any interrupt from a possible cancel(true) is only
         * delivered to a task while in run or runAndReset.
         */
        private void handlePossibleCancellationInterrupt(int s) {
            // It is possible for our interrupter to stall before getting a
            // chance to interrupt us.  Let's spin-wait patiently.
            if (s == INTERRUPTING)
                while (state == INTERRUPTING)
                    Thread.yield(); // wait out pending interrupt
    
            // assert state == INTERRUPTED;
    
            // We want to clear any interrupt we may have received from
            // cancel(true).  However, it is permissible to use interrupts
            // as an independent mechanism for a task to communicate with
            // its caller, and there is no way to clear only the
            // cancellation interrupt.
            //
            // Thread.interrupted();
        }
    
        /**
         * Simple linked list nodes to record waiting threads in a Treiber
         * stack.  See other classes such as Phaser and SynchronousQueue
         * for more detailed explanation.
         */
        static final class WaitNode {
            volatile Thread thread;
            volatile WaitNode next;
            WaitNode() { thread = Thread.currentThread(); }
        }
    
        /**
         * Removes and signals all waiting threads, invokes done(), and
         * nulls out callable.
         */
        private void finishCompletion() {
            // assert state > COMPLETING;
            for (WaitNode q; (q = waiters) != null;) {
                if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                    for (;;) {
                        Thread t = q.thread;
                        if (t != null) {
                            q.thread = null;
                            LockSupport.unpark(t);
                        }
                        WaitNode next = q.next;
                        if (next == null)
                            break;
                        q.next = null; // unlink to help gc
                        q = next;
                    }
                    break;
                }
            }
    
            done();
    
            callable = null;        // to reduce footprint
        }
    
        /**
         * Awaits completion or aborts on interrupt or timeout.
         *
         * @param timed true if use timed waits
         * @param nanos time to wait, if timed
         * @return state upon completion
         */
        private int awaitDone(boolean timed, long nanos)
            throws InterruptedException {
            final long deadline = timed ? System.nanoTime() + nanos : 0L;
            WaitNode q = null;
            boolean queued = false;
            for (;;) {
                if (Thread.interrupted()) {
                    removeWaiter(q);
                    throw new InterruptedException();
                }
    
                int s = state;
                if (s > COMPLETING) {
                    if (q != null)
                        q.thread = null;
                    return s;
                }
                else if (s == COMPLETING) // cannot time out yet
                    Thread.yield();
                else if (q == null)
                    q = new WaitNode();
                else if (!queued)
                    queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                         q.next = waiters, q);
                else if (timed) {
                    nanos = deadline - System.nanoTime();
                    if (nanos <= 0L) {
                        removeWaiter(q);
                        return state;
                    }
                    LockSupport.parkNanos(this, nanos);
                }
                else
                    LockSupport.park(this);
            }
        }
    
        /**
         * Tries to unlink a timed-out or interrupted wait node to avoid
         * accumulating garbage.  Internal nodes are simply unspliced
         * without CAS since it is harmless if they are traversed anyway
         * by releasers.  To avoid effects of unsplicing from already
         * removed nodes, the list is retraversed in case of an apparent
         * race.  This is slow when there are a lot of nodes, but we don't
         * expect lists to be long enough to outweigh higher-overhead
         * schemes.
         */
        private void removeWaiter(WaitNode node) {
            if (node != null) {
                node.thread = null;
                retry:
                for (;;) {          // restart on removeWaiter race
                    for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                        s = q.next;
                        if (q.thread != null)
                            pred = q;
                        else if (pred != null) {
                            pred.next = s;
                            if (pred.thread == null) // check for race
                                continue retry;
                        }
                        else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                              q, s))
                            continue retry;
                    }
                    break;
                }
            }
        }
    
        // Unsafe mechanics
        private static final sun.misc.Unsafe UNSAFE;
        private static final long stateOffset;
        private static final long runnerOffset;
        private static final long waitersOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> k = FutureTask.class;
                stateOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("state"));
                runnerOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("runner"));
                waitersOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("waiters"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    
    }
    View Code

    0. FutureTask简介

    可取消的异步计算,可以用于包装Runnable或者Callable对象,可以查询计算完成状态,如果计算未完成则阻塞查询线程至完成为止,可以只是取消未完成的计算,也可以向运行中的计算发送中断信号。

    1. FutureTask接口分析

    2. FutureTask的state变量

    FutureTask内部维护了一个volatile类型的int变量state,用于存储FutureTask的状态,其可能的取值如下

    private static final int NEW          = 0;//新建,实际上计算任务可能正在执行
    private static final int COMPLETING = 1;//执行中,实际上计算任务已经执行完毕(可能正常,也可能是发生异常)
    private static final int NORMAL = 2;//正常结束
    private static final int EXCEPTIONAL = 3;//异常结束
    private static final int CANCELLED = 4;//已取消
    private static final int INTERRUPTING = 5;//中断中
    private static final int INTERRUPTED = 6;//已中断

    可能的状态转移流程为

    * Possible state transitions:
    * NEW -> COMPLETING -> NORMAL
    * NEW -> COMPLETING -> EXCEPTIONAL
    * NEW -> CANCELLED
    * NEW -> INTERRUPTING -> INTERRUPTED

    3. FutureTask的构造方法

        /**
         * Creates a {@code FutureTask} that will, upon running, execute the
         * given {@code Runnable}, and arrange that {@code get} will return the
         * given result on successful completion.
         *
         * @param runnable the runnable task
         * @param result the result to return on successful completion. If
         * you don't need a particular result, consider using
         * constructions of the form:
         * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
         * @throws NullPointerException if the runnable is null
         */
        public FutureTask(Runnable runnable, V result) {
            this.callable = Executors.callable(runnable, result);
            this.state = NEW;       // ensure visibility of callable
        }

    初始化时,将state设置为NEW

    4. FutureTask.run方法

        public void run() {
            if (state != NEW ||//当前状态必须为NEW,工作线程必须为null,然后将工作线程用cas操作设置为当前线程
                !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                             null, Thread.currentThread()))
                return;
            try {
                Callable<V> c = callable;
                if (c != null && state == NEW) {//这个时候已经可以保证FutureTask是由当前线程独占了,只要判断当前线程没有已经执行过这个FutureTask即可
                    V result;
                    boolean ran;
                    try {
                        result = c.call();//当前线程执行计算任务
                        ran = true;//成功跑完,标记一下
                    } catch (Throwable ex) {//计算过程中抛出异常
                        result = null;
                        ran = false;//标记任务未完成
                        setException(ex);//标记任务异常
                    }
                    if (ran)
                        set(result);//标记任务正常完成
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;//先设置state,再设置runner为null,防止并发调用call出问题
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                int s = state;
                if (s >= INTERRUPTING)//处理可能的中断
                    handlePossibleCancellationInterrupt(s);
            }
        }
    
    
        /**
         * Sets the result of this future to the given value unless
         * this future has already been set or has been cancelled.
         *
         * <p>This method is invoked internally by the {@link #run} method
         * upon successful completion of the computation.
         *
         * @param v the value
         */
        protected void set(V v) {//设置FutureTask为正常结束
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = v;
                UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
                finishCompletion();
            }
        }
    
        /**
         * Causes this future to report an {@link ExecutionException}
         * with the given throwable as its cause, unless this future has
         * already been set or has been cancelled.
         *
         * <p>This method is invoked internally by the {@link #run} method
         * upon failure of the computation.
         *
         * @param t the cause of failure
         */
        protected void setException(Throwable t) {//设置FutureTask为异常结束
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = t;
                UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
                finishCompletion();
            }
        }

    5. FutureTask.runAndReset方法

        /**
         * Executes the computation without setting its result, and then
         * resets this future to initial state, failing to do so if the
         * computation encounters an exception or is cancelled.  This is
         * designed for use with tasks that intrinsically execute more
         * than once.
         *
         * @return true if successfully run and reset
         */
        protected boolean runAndReset() {
            if (state != NEW ||
                !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                             null, Thread.currentThread()))
                return false;
            boolean ran = false;
            int s = state;
            try {
                Callable<V> c = callable;
                if (c != null && s == NEW) {
                    try {
                        c.call(); // don't set result//不设置结果
                        ran = true;//如果任务计算过程中抛出异常或者被中断,ran变量为false
                    } catch (Throwable ex) {
                        setException(ex);
                    }
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
            return ran && s == NEW;//如果任务是正常结束,重置FutureTask状态
        }

    与FutureTask.run有所不同,首先如果计算任务执行成功,FutureTask的状态会被重置,其次是runAndReset方法不会设置计算任务的结果。

    runAndReset方法主要用于定时任务的场景,比方说上一篇介绍的ScheduledThreadPoolExecutor中,ScheduledFutureTask.run方法中,对于周期执行的任务,就是调用的runAndReset方法。

    5. FutureTask.cancel方法

        public boolean cancel(boolean mayInterruptIfRunning) {
            if (state != NEW)
                return false;
            if (mayInterruptIfRunning) {
                if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))//设置FutureTask的状态为INTERRUPTING
                    return false;
                Thread t = runner;
                if (t != null)
                    t.interrupt();//发送中断信号
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state//设置FutureTask的状态为INTERRUPTED
            }
            else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))//设置FutureTask的状态为CANCELLED
                return false;
            finishCompletion();
            return true;
        }

    逻辑很简单,只cancel状态为NEW的FutureTask

    6. FutureTask.get方法

        /**
         * @throws CancellationException {@inheritDoc}
         */
        public V get() throws InterruptedException, ExecutionException {
            int s = state;
            if (s <= COMPLETING)//任务未完成,排队等待结果
                s = awaitDone(false, 0L);
            return report(s);
        }
    
        /**
         * Awaits completion or aborts on interrupt or timeout.
         *
         * @param timed true if use timed waits
         * @param nanos time to wait, if timed
         * @return state upon completion
         */
        private int awaitDone(boolean timed, long nanos)
            throws InterruptedException {
            final long deadline = timed ? System.nanoTime() + nanos : 0L;//计算等待结果线程的唤醒时间
            WaitNode q = null;
            boolean queued = false;
            for (;;) {//死循环中等待结果
                if (Thread.interrupted()) {//等待线程被中断
                    removeWaiter(q);//从等待队列中移除
                    throw new InterruptedException();
                }
    
                int s = state;
                if (s > COMPLETING) {//计算任务结束
                    if (q != null)//函数返回
                        q.thread = null;
                    return s;
                }
                else if (s == COMPLETING) // cannot time out yet
                    Thread.yield();//计算任务尚未结束,退让,减少开销
                else if (q == null)
                    q = new WaitNode();//创建新的等待节点
                else if (!queued)//如果当前等待节点还未入栈
                    queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                         q.next = waiters, q);//用CAS操作将当前等待节点入栈
                else if (timed) {
                    nanos = deadline - System.nanoTime();
                    if (nanos <= 0L) {
                        removeWaiter(q);
                        return state;
                    }
                    LockSupport.parkNanos(this, nanos);//入栈成功,等待
                }
                else
                    LockSupport.park(this);//入栈成功,等待
            }
        }

    这里用到了Treiber stack算法,让调用get方法的线程排队等待

    7. FutureTask.finishCompletion方法

        /**
         * Removes and signals all waiting threads, invokes done(), and
         * nulls out callable.
         */
        private void finishCompletion() {
            // assert state > COMPLETING;
            for (WaitNode q; (q = waiters) != null;) {
                if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                    for (;;) {
                        Thread t = q.thread;
                        if (t != null) {
                            q.thread = null;
                            LockSupport.unpark(t);//唤醒等待线程
                        }
                        WaitNode next = q.next;//查找下一个等待线程
                        if (next == null)
                            break;
                        q.next = null; // unlink to help gc
                        q = next;
                    }
                    break;
                }
            }
    
            done();
    
            callable = null;        // to reduce footprint
        }

    FutureTask的任务如果执行结束,就会调用finishCompletion方法,这个方法会唤醒所有因为调用get方法而等待的线程,于是这些线程可以拿着FutureTask的执行结果离开了。

  • 相关阅读:
    weblogic 反序列化补丁绕过漏洞的一个批量检测shell脚本(CVE-2017-3248 )
    【转】常用端口服务
    【转】服务器解析漏洞
    针对Web的信息搜集
    Kali Linux安装AWVS漏扫工具
    PowerShell 反弹渗透技巧
    ShellCode 最小化编译优化
    Ansible 自动化学习笔记(精简)
    基于白名单的Payload
    社工工具包 SEToolkit
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7210208.html
Copyright © 2011-2022 走看看