zoukankan      html  css  js  c++  java
  • 支持向量机及核函数

    常见核函数

    线性核 (linear kernel):$$K(x_1,x_2)=x_1cdot x_2+c$$
    多项式核 (polynomial kernel):$$K(x_1, x_2)=(x_1cdot x_2 +c)^d$$其中 (dge1),为多项式的次数。

    感知器核 (Sigmoid kernel):$$K(x_1, x_2)=tanh(eta(x_1cdot x_2)+c)$$其中 (tanh) 为双曲正切函数,(eta>0, heta<0)

    高斯核 (Gaussian kernel): $$K(x_1,x_2)=exp(-dfrac{left|x_1-x_2 ight|2}{2sigma2}), 也记作:exp(-gamma left|x_1-x_2 ight|2), gamma=frac{1}{2sigma2}$$其中 (sigma>0),为高斯核的带宽(width)。高斯核 也称作 径向基核(RBF)

    拉普拉斯核 (Laplace kernel):$$K(x_1, x_2)=exp(-dfrac{left|x_1-x_2 ight|}{sigma}), sigma>0$$

      核函数的形式可看出 高斯核拉普拉斯核平移不变核多项式核感知器核 为 内积核函数,为 旋转不变核
      

    核函数的本质

      将原始输入空间映射到新的特征空间,从而,使得原本线性不可分的样本可能在核空间可分。有效的核函数一定是对称半正定的;往往依赖先验领域知识验证等方案才能选择有效的核函数。

    SVM 的参数

    1.参数 (C)

      显然,(C) 越大,对样本分类正确的要求越严格,间隔宽就带越窄;同时也导致易过拟合。(C=+infty) 则 软间隔SVM 退化为 硬间隔SVM。

    2.高斯核的参数 (gamma) ((gamma =frac{1}{2sigma^2})):

      显然 (sigma)(gamma) 成反比关系,对于类似于高斯分布形式的 高斯核 而言,(gamma) 越小,PDF(概率密度函数,Probability Density Function)平均,趋近于直线(矮胖);越大,PDF 越集中(高瘦)。
      邹博:PDF趋近于直线 即 近似于线性核,分类能力弱化。因为 (gamma) 很小时,通常在 (gamma<0.1) 时就有:(x_1cdot x_2 approx exp(-gammaleft|x_1-x_2 ight|^2))
      
    小结:

      1. (C) 的大小控制了分隔带宽的大小,惩罚 (C) 越大,带宽越小,训练样本上的分类能力越强,容易发生过拟合。
      2. (gamma) 控制了分隔线的非线性程度,(gamma) 越大,非线性程度越大,分类能力越强,容易发生过拟合。
      (C)(gamma) 越大,训练样本上分类能力越强,同时也容易发生过拟合。
      
      参考下图结果:

  • 相关阅读:
    Java精选笔记_JSP技术
    Java精选笔记_JavaBean
    Java精选笔记_JSP开发模型
    Java精选笔记_XML基础
    Git_多人协作
    Git_Feature分支
    Git_Bug分支
    Git_分支管理策略
    Git_解决冲突
    Git_创建与合并分支
  • 原文地址:https://www.cnblogs.com/stevenlk/p/6529063.html
Copyright © 2011-2022 走看看