zoukankan      html  css  js  c++  java
  • IPC之mqueue.c源码解读

    队列的意思应该大家都清楚,不过还有有一些细节的地方不知道,下面是一个队列的源码,因该说这是队列的一部分,不是全部。而且是linux中队列,其他各种OS中队列大同小异。

    /*
     * POSIX message queues filesystem for Linux.
     *
     * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
     *                          Michal Wronski          (michal.wronski@gmail.com)
     *
     * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
     * Lockless receive & send, fd based notify:
     *			    Manfred Spraul	    (manfred@colorfullife.com)
     *
     * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
     *
     * This file is released under the GPL.
     */
    
    #include <linux/capability.h>
    #include <linux/init.h>
    #include <linux/pagemap.h>
    #include <linux/file.h>
    #include <linux/mount.h>
    #include <linux/fs_context.h>
    #include <linux/namei.h>
    #include <linux/sysctl.h>
    #include <linux/poll.h>
    #include <linux/mqueue.h>
    #include <linux/msg.h>
    #include <linux/skbuff.h>
    #include <linux/vmalloc.h>
    #include <linux/netlink.h>
    #include <linux/syscalls.h>
    #include <linux/audit.h>
    #include <linux/signal.h>
    #include <linux/mutex.h>
    #include <linux/nsproxy.h>
    #include <linux/pid.h>
    #include <linux/ipc_namespace.h>
    #include <linux/user_namespace.h>
    #include <linux/slab.h>
    #include <linux/sched/wake_q.h>
    #include <linux/sched/signal.h>
    #include <linux/sched/user.h>
    
    #include <net/sock.h>
    #include "util.h"
    
    struct mqueue_fs_context {
    	struct ipc_namespace	*ipc_ns;
    };
    
    #define MQUEUE_MAGIC	0x19800202
    #define DIRENT_SIZE	20
    #define FILENT_SIZE	80
    
    #define SEND		0
    #define RECV		1
    
    #define STATE_NONE	0
    #define STATE_READY	1
    
    struct posix_msg_tree_node {
    	struct rb_node		rb_node;
    	struct list_head	msg_list;
    	int			priority;
    };
    
    struct ext_wait_queue {		/* queue of sleeping tasks */
    	struct task_struct *task;
    	struct list_head list;
    	struct msg_msg *msg;	/* ptr of loaded message */
    	int state;		/* one of STATE_* values */
    };
    
    struct mqueue_inode_info {
    	spinlock_t lock;
    	struct inode vfs_inode;
    	wait_queue_head_t wait_q;
    
    	struct rb_root msg_tree;
    	struct rb_node *msg_tree_rightmost;
    	struct posix_msg_tree_node *node_cache;
    	struct mq_attr attr;
    
    	struct sigevent notify;
    	struct pid *notify_owner;
    	struct user_namespace *notify_user_ns;
    	struct user_struct *user;	/* user who created, for accounting */
    	struct sock *notify_sock;
    	struct sk_buff *notify_cookie;
    
    	/* for tasks waiting for free space and messages, respectively */
    	struct ext_wait_queue e_wait_q[2];
    
    	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
    };
    
    static struct file_system_type mqueue_fs_type;
    static const struct inode_operations mqueue_dir_inode_operations;
    static const struct file_operations mqueue_file_operations;
    static const struct super_operations mqueue_super_ops;
    static const struct fs_context_operations mqueue_fs_context_ops;
    static void remove_notification(struct mqueue_inode_info *info);
    
    static struct kmem_cache *mqueue_inode_cachep;
    
    static struct ctl_table_header *mq_sysctl_table;
    
    static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
    {
    	return container_of(inode, struct mqueue_inode_info, vfs_inode);
    }
    
    /*
     * This routine should be called with the mq_lock held.
     */
    static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
    {
    	return get_ipc_ns(inode->i_sb->s_fs_info);
    }
    
    static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
    {
    	struct ipc_namespace *ns;
    
    	spin_lock(&mq_lock);
    	ns = __get_ns_from_inode(inode);
    	spin_unlock(&mq_lock);
    	return ns;
    }
    
    /* Auxiliary functions to manipulate messages' list */
    static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
    {
    	struct rb_node **p, *parent = NULL;
    	struct posix_msg_tree_node *leaf;
    	bool rightmost = true;
    
    	p = &info->msg_tree.rb_node;
    	while (*p) {
    		parent = *p;
    		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
    
    		if (likely(leaf->priority == msg->m_type))
    			goto insert_msg;
    		else if (msg->m_type < leaf->priority) {
    			p = &(*p)->rb_left;
    			rightmost = false;
    		} else
    			p = &(*p)->rb_right;
    	}
    	if (info->node_cache) {
    		leaf = info->node_cache;
    		info->node_cache = NULL;
    	} else {
    		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
    		if (!leaf)
    			return -ENOMEM;
    		INIT_LIST_HEAD(&leaf->msg_list);
    	}
    	leaf->priority = msg->m_type;
    
    	if (rightmost)
    		info->msg_tree_rightmost = &leaf->rb_node;
    
    	rb_link_node(&leaf->rb_node, parent, p);
    	rb_insert_color(&leaf->rb_node, &info->msg_tree);
    insert_msg:
    	info->attr.mq_curmsgs++;
    	info->qsize += msg->m_ts;
    	list_add_tail(&msg->m_list, &leaf->msg_list);
    	return 0;
    }
    
    static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
    				  struct mqueue_inode_info *info)
    {
    	struct rb_node *node = &leaf->rb_node;
    
    	if (info->msg_tree_rightmost == node)
    		info->msg_tree_rightmost = rb_prev(node);
    
    	rb_erase(node, &info->msg_tree);
    	if (info->node_cache) {
    		kfree(leaf);
    	} else {
    		info->node_cache = leaf;
    	}
    }
    
    static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
    {
    	struct rb_node *parent = NULL;
    	struct posix_msg_tree_node *leaf;
    	struct msg_msg *msg;
    
    try_again:
    	/*
    	 * During insert, low priorities go to the left and high to the
    	 * right.  On receive, we want the highest priorities first, so
    	 * walk all the way to the right.
    	 */
    	parent = info->msg_tree_rightmost;
    	if (!parent) {
    		if (info->attr.mq_curmsgs) {
    			pr_warn_once("Inconsistency in POSIX message queue, "
    				     "no tree element, but supposedly messages "
    				     "should exist!
    ");
    			info->attr.mq_curmsgs = 0;
    		}
    		return NULL;
    	}
    	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
    	if (unlikely(list_empty(&leaf->msg_list))) {
    		pr_warn_once("Inconsistency in POSIX message queue, "
    			     "empty leaf node but we haven't implemented "
    			     "lazy leaf delete!
    ");
    		msg_tree_erase(leaf, info);
    		goto try_again;
    	} else {
    		msg = list_first_entry(&leaf->msg_list,
    				       struct msg_msg, m_list);
    		list_del(&msg->m_list);
    		if (list_empty(&leaf->msg_list)) {
    			msg_tree_erase(leaf, info);
    		}
    	}
    	info->attr.mq_curmsgs--;
    	info->qsize -= msg->m_ts;
    	return msg;
    }
    
    static struct inode *mqueue_get_inode(struct super_block *sb,
    		struct ipc_namespace *ipc_ns, umode_t mode,
    		struct mq_attr *attr)
    {
    	struct user_struct *u = current_user();
    	struct inode *inode;
    	int ret = -ENOMEM;
    
    	inode = new_inode(sb);
    	if (!inode)
    		goto err;
    
    	inode->i_ino = get_next_ino();
    	inode->i_mode = mode;
    	inode->i_uid = current_fsuid();
    	inode->i_gid = current_fsgid();
    	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
    
    	if (S_ISREG(mode)) {
    		struct mqueue_inode_info *info;
    		unsigned long mq_bytes, mq_treesize;
    
    		inode->i_fop = &mqueue_file_operations;
    		inode->i_size = FILENT_SIZE;
    		/* mqueue specific info */
    		info = MQUEUE_I(inode);
    		spin_lock_init(&info->lock);
    		init_waitqueue_head(&info->wait_q);
    		INIT_LIST_HEAD(&info->e_wait_q[0].list);
    		INIT_LIST_HEAD(&info->e_wait_q[1].list);
    		info->notify_owner = NULL;
    		info->notify_user_ns = NULL;
    		info->qsize = 0;
    		info->user = NULL;	/* set when all is ok */
    		info->msg_tree = RB_ROOT;
    		info->msg_tree_rightmost = NULL;
    		info->node_cache = NULL;
    		memset(&info->attr, 0, sizeof(info->attr));
    		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
    					   ipc_ns->mq_msg_default);
    		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
    					    ipc_ns->mq_msgsize_default);
    		if (attr) {
    			info->attr.mq_maxmsg = attr->mq_maxmsg;
    			info->attr.mq_msgsize = attr->mq_msgsize;
    		}
    		/*
    		 * We used to allocate a static array of pointers and account
    		 * the size of that array as well as one msg_msg struct per
    		 * possible message into the queue size. That's no longer
    		 * accurate as the queue is now an rbtree and will grow and
    		 * shrink depending on usage patterns.  We can, however, still
    		 * account one msg_msg struct per message, but the nodes are
    		 * allocated depending on priority usage, and most programs
    		 * only use one, or a handful, of priorities.  However, since
    		 * this is pinned memory, we need to assume worst case, so
    		 * that means the min(mq_maxmsg, max_priorities) * struct
    		 * posix_msg_tree_node.
    		 */
    
    		ret = -EINVAL;
    		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
    			goto out_inode;
    		if (capable(CAP_SYS_RESOURCE)) {
    			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
    			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
    				goto out_inode;
    		} else {
    			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
    					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
    				goto out_inode;
    		}
    		ret = -EOVERFLOW;
    		/* check for overflow */
    		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
    			goto out_inode;
    		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
    			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
    			sizeof(struct posix_msg_tree_node);
    		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
    		if (mq_bytes + mq_treesize < mq_bytes)
    			goto out_inode;
    		mq_bytes += mq_treesize;
    		spin_lock(&mq_lock);
    		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
    		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
    			spin_unlock(&mq_lock);
    			/* mqueue_evict_inode() releases info->messages */
    			ret = -EMFILE;
    			goto out_inode;
    		}
    		u->mq_bytes += mq_bytes;
    		spin_unlock(&mq_lock);
    
    		/* all is ok */
    		info->user = get_uid(u);
    	} else if (S_ISDIR(mode)) {
    		inc_nlink(inode);
    		/* Some things misbehave if size == 0 on a directory */
    		inode->i_size = 2 * DIRENT_SIZE;
    		inode->i_op = &mqueue_dir_inode_operations;
    		inode->i_fop = &simple_dir_operations;
    	}
    
    	return inode;
    out_inode:
    	iput(inode);
    err:
    	return ERR_PTR(ret);
    }
    
    static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
    {
    	struct inode *inode;
    	struct ipc_namespace *ns = sb->s_fs_info;
    
    	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
    	sb->s_blocksize = PAGE_SIZE;
    	sb->s_blocksize_bits = PAGE_SHIFT;
    	sb->s_magic = MQUEUE_MAGIC;
    	sb->s_op = &mqueue_super_ops;
    
    	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
    	if (IS_ERR(inode))
    		return PTR_ERR(inode);
    
    	sb->s_root = d_make_root(inode);
    	if (!sb->s_root)
    		return -ENOMEM;
    	return 0;
    }
    
    static int mqueue_get_tree(struct fs_context *fc)
    {
    	struct mqueue_fs_context *ctx = fc->fs_private;
    
    	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
    }
    
    static void mqueue_fs_context_free(struct fs_context *fc)
    {
    	struct mqueue_fs_context *ctx = fc->fs_private;
    
    	put_ipc_ns(ctx->ipc_ns);
    	kfree(ctx);
    }
    
    static int mqueue_init_fs_context(struct fs_context *fc)
    {
    	struct mqueue_fs_context *ctx;
    
    	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
    	if (!ctx)
    		return -ENOMEM;
    
    	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
    	put_user_ns(fc->user_ns);
    	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
    	fc->fs_private = ctx;
    	fc->ops = &mqueue_fs_context_ops;
    	return 0;
    }
    
    static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
    {
    	struct mqueue_fs_context *ctx;
    	struct fs_context *fc;
    	struct vfsmount *mnt;
    
    	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
    	if (IS_ERR(fc))
    		return ERR_CAST(fc);
    
    	ctx = fc->fs_private;
    	put_ipc_ns(ctx->ipc_ns);
    	ctx->ipc_ns = get_ipc_ns(ns);
    	put_user_ns(fc->user_ns);
    	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
    
    	mnt = fc_mount(fc);
    	put_fs_context(fc);
    	return mnt;
    }
    
    static void init_once(void *foo)
    {
    	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
    
    	inode_init_once(&p->vfs_inode);
    }
    
    static struct inode *mqueue_alloc_inode(struct super_block *sb)
    {
    	struct mqueue_inode_info *ei;
    
    	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
    	if (!ei)
    		return NULL;
    	return &ei->vfs_inode;
    }
    
    static void mqueue_free_inode(struct inode *inode)
    {
    	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
    }
    
    static void mqueue_evict_inode(struct inode *inode)
    {
    	struct mqueue_inode_info *info;
    	struct user_struct *user;
    	struct ipc_namespace *ipc_ns;
    	struct msg_msg *msg, *nmsg;
    	LIST_HEAD(tmp_msg);
    
    	clear_inode(inode);
    
    	if (S_ISDIR(inode->i_mode))
    		return;
    
    	ipc_ns = get_ns_from_inode(inode);
    	info = MQUEUE_I(inode);
    	spin_lock(&info->lock);
    	while ((msg = msg_get(info)) != NULL)
    		list_add_tail(&msg->m_list, &tmp_msg);
    	kfree(info->node_cache);
    	spin_unlock(&info->lock);
    
    	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
    		list_del(&msg->m_list);
    		free_msg(msg);
    	}
    
    	user = info->user;
    	if (user) {
    		unsigned long mq_bytes, mq_treesize;
    
    		/* Total amount of bytes accounted for the mqueue */
    		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
    			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
    			sizeof(struct posix_msg_tree_node);
    
    		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
    					  info->attr.mq_msgsize);
    
    		spin_lock(&mq_lock);
    		user->mq_bytes -= mq_bytes;
    		/*
    		 * get_ns_from_inode() ensures that the
    		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
    		 * to which we now hold a reference, or it is NULL.
    		 * We can't put it here under mq_lock, though.
    		 */
    		if (ipc_ns)
    			ipc_ns->mq_queues_count--;
    		spin_unlock(&mq_lock);
    		free_uid(user);
    	}
    	if (ipc_ns)
    		put_ipc_ns(ipc_ns);
    }
    
    static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
    {
    	struct inode *dir = dentry->d_parent->d_inode;
    	struct inode *inode;
    	struct mq_attr *attr = arg;
    	int error;
    	struct ipc_namespace *ipc_ns;
    
    	spin_lock(&mq_lock);
    	ipc_ns = __get_ns_from_inode(dir);
    	if (!ipc_ns) {
    		error = -EACCES;
    		goto out_unlock;
    	}
    
    	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
    	    !capable(CAP_SYS_RESOURCE)) {
    		error = -ENOSPC;
    		goto out_unlock;
    	}
    	ipc_ns->mq_queues_count++;
    	spin_unlock(&mq_lock);
    
    	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
    	if (IS_ERR(inode)) {
    		error = PTR_ERR(inode);
    		spin_lock(&mq_lock);
    		ipc_ns->mq_queues_count--;
    		goto out_unlock;
    	}
    
    	put_ipc_ns(ipc_ns);
    	dir->i_size += DIRENT_SIZE;
    	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
    
    	d_instantiate(dentry, inode);
    	dget(dentry);
    	return 0;
    out_unlock:
    	spin_unlock(&mq_lock);
    	if (ipc_ns)
    		put_ipc_ns(ipc_ns);
    	return error;
    }
    
    static int mqueue_create(struct inode *dir, struct dentry *dentry,
    				umode_t mode, bool excl)
    {
    	return mqueue_create_attr(dentry, mode, NULL);
    }
    
    static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
    {
    	struct inode *inode = d_inode(dentry);
    
    	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
    	dir->i_size -= DIRENT_SIZE;
    	drop_nlink(inode);
    	dput(dentry);
    	return 0;
    }
    
    /*
    *	This is routine for system read from queue file.
    *	To avoid mess with doing here some sort of mq_receive we allow
    *	to read only queue size & notification info (the only values
    *	that are interesting from user point of view and aren't accessible
    *	through std routines)
    */
    static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
    				size_t count, loff_t *off)
    {
    	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    	char buffer[FILENT_SIZE];
    	ssize_t ret;
    
    	spin_lock(&info->lock);
    	snprintf(buffer, sizeof(buffer),
    			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d
    ",
    			info->qsize,
    			info->notify_owner ? info->notify.sigev_notify : 0,
    			(info->notify_owner &&
    			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
    				info->notify.sigev_signo : 0,
    			pid_vnr(info->notify_owner));
    	spin_unlock(&info->lock);
    	buffer[sizeof(buffer)-1] = '';
    
    	ret = simple_read_from_buffer(u_data, count, off, buffer,
    				strlen(buffer));
    	if (ret <= 0)
    		return ret;
    
    	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
    	return ret;
    }
    
    static int mqueue_flush_file(struct file *filp, fl_owner_t id)
    {
    	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    
    	spin_lock(&info->lock);
    	if (task_tgid(current) == info->notify_owner)
    		remove_notification(info);
    
    	spin_unlock(&info->lock);
    	return 0;
    }
    
    static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
    {
    	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
    	__poll_t retval = 0;
    
    	poll_wait(filp, &info->wait_q, poll_tab);
    
    	spin_lock(&info->lock);
    	if (info->attr.mq_curmsgs)
    		retval = EPOLLIN | EPOLLRDNORM;
    
    	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
    		retval |= EPOLLOUT | EPOLLWRNORM;
    	spin_unlock(&info->lock);
    
    	return retval;
    }
    
    /* Adds current to info->e_wait_q[sr] before element with smaller prio */
    static void wq_add(struct mqueue_inode_info *info, int sr,
    			struct ext_wait_queue *ewp)
    {
    	struct ext_wait_queue *walk;
    
    	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
    		if (walk->task->prio <= current->prio) {
    			list_add_tail(&ewp->list, &walk->list);
    			return;
    		}
    	}
    	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
    }
    
    /*
     * Puts current task to sleep. Caller must hold queue lock. After return
     * lock isn't held.
     * sr: SEND or RECV
     */
    static int wq_sleep(struct mqueue_inode_info *info, int sr,
    		    ktime_t *timeout, struct ext_wait_queue *ewp)
    	__releases(&info->lock)
    {
    	int retval;
    	signed long time;
    
    	wq_add(info, sr, ewp);
    
    	for (;;) {
    		__set_current_state(TASK_INTERRUPTIBLE);
    
    		spin_unlock(&info->lock);
    		time = schedule_hrtimeout_range_clock(timeout, 0,
    			HRTIMER_MODE_ABS, CLOCK_REALTIME);
    
    		if (ewp->state == STATE_READY) {
    			retval = 0;
    			goto out;
    		}
    		spin_lock(&info->lock);
    		if (ewp->state == STATE_READY) {
    			retval = 0;
    			goto out_unlock;
    		}
    		if (signal_pending(current)) {
    			retval = -ERESTARTSYS;
    			break;
    		}
    		if (time == 0) {
    			retval = -ETIMEDOUT;
    			break;
    		}
    	}
    	list_del(&ewp->list);
    out_unlock:
    	spin_unlock(&info->lock);
    out:
    	return retval;
    }
    
    /*
     * Returns waiting task that should be serviced first or NULL if none exists
     */
    static struct ext_wait_queue *wq_get_first_waiter(
    		struct mqueue_inode_info *info, int sr)
    {
    	struct list_head *ptr;
    
    	ptr = info->e_wait_q[sr].list.prev;
    	if (ptr == &info->e_wait_q[sr].list)
    		return NULL;
    	return list_entry(ptr, struct ext_wait_queue, list);
    }
    
    
    static inline void set_cookie(struct sk_buff *skb, char code)
    {
    	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
    }
    
    /*
     * The next function is only to split too long sys_mq_timedsend
     */
    static void __do_notify(struct mqueue_inode_info *info)
    {
    	/* notification
    	 * invoked when there is registered process and there isn't process
    	 * waiting synchronously for message AND state of queue changed from
    	 * empty to not empty. Here we are sure that no one is waiting
    	 * synchronously. */
    	if (info->notify_owner &&
    	    info->attr.mq_curmsgs == 1) {
    		struct kernel_siginfo sig_i;
    		switch (info->notify.sigev_notify) {
    		case SIGEV_NONE:
    			break;
    		case SIGEV_SIGNAL:
    			/* sends signal */
    
    			clear_siginfo(&sig_i);
    			sig_i.si_signo = info->notify.sigev_signo;
    			sig_i.si_errno = 0;
    			sig_i.si_code = SI_MESGQ;
    			sig_i.si_value = info->notify.sigev_value;
    			/* map current pid/uid into info->owner's namespaces */
    			rcu_read_lock();
    			sig_i.si_pid = task_tgid_nr_ns(current,
    						ns_of_pid(info->notify_owner));
    			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
    			rcu_read_unlock();
    
    			kill_pid_info(info->notify.sigev_signo,
    				      &sig_i, info->notify_owner);
    			break;
    		case SIGEV_THREAD:
    			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
    			netlink_sendskb(info->notify_sock, info->notify_cookie);
    			break;
    		}
    		/* after notification unregisters process */
    		put_pid(info->notify_owner);
    		put_user_ns(info->notify_user_ns);
    		info->notify_owner = NULL;
    		info->notify_user_ns = NULL;
    	}
    	wake_up(&info->wait_q);
    }
    
    static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
    			   struct timespec64 *ts)
    {
    	if (get_timespec64(ts, u_abs_timeout))
    		return -EFAULT;
    	if (!timespec64_valid(ts))
    		return -EINVAL;
    	return 0;
    }
    
    static void remove_notification(struct mqueue_inode_info *info)
    {
    	if (info->notify_owner != NULL &&
    	    info->notify.sigev_notify == SIGEV_THREAD) {
    		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
    		netlink_sendskb(info->notify_sock, info->notify_cookie);
    	}
    	put_pid(info->notify_owner);
    	put_user_ns(info->notify_user_ns);
    	info->notify_owner = NULL;
    	info->notify_user_ns = NULL;
    }
    
    static int prepare_open(struct dentry *dentry, int oflag, int ro,
    			umode_t mode, struct filename *name,
    			struct mq_attr *attr)
    {
    	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
    						  MAY_READ | MAY_WRITE };
    	int acc;
    
    	if (d_really_is_negative(dentry)) {
    		if (!(oflag & O_CREAT))
    			return -ENOENT;
    		if (ro)
    			return ro;
    		audit_inode_parent_hidden(name, dentry->d_parent);
    		return vfs_mkobj(dentry, mode & ~current_umask(),
    				  mqueue_create_attr, attr);
    	}
    	/* it already existed */
    	audit_inode(name, dentry, 0);
    	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
    		return -EEXIST;
    	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
    		return -EINVAL;
    	acc = oflag2acc[oflag & O_ACCMODE];
    	return inode_permission(d_inode(dentry), acc);
    }
    
    static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
    		      struct mq_attr *attr)
    {
    	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
    	struct dentry *root = mnt->mnt_root;
    	struct filename *name;
    	struct path path;
    	int fd, error;
    	int ro;
    
    	audit_mq_open(oflag, mode, attr);
    
    	if (IS_ERR(name = getname(u_name)))
    		return PTR_ERR(name);
    
    	fd = get_unused_fd_flags(O_CLOEXEC);
    	if (fd < 0)
    		goto out_putname;
    
    	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
    	inode_lock(d_inode(root));
    	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
    	if (IS_ERR(path.dentry)) {
    		error = PTR_ERR(path.dentry);
    		goto out_putfd;
    	}
    	path.mnt = mntget(mnt);
    	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
    	if (!error) {
    		struct file *file = dentry_open(&path, oflag, current_cred());
    		if (!IS_ERR(file))
    			fd_install(fd, file);
    		else
    			error = PTR_ERR(file);
    	}
    	path_put(&path);
    out_putfd:
    	if (error) {
    		put_unused_fd(fd);
    		fd = error;
    	}
    	inode_unlock(d_inode(root));
    	if (!ro)
    		mnt_drop_write(mnt);
    out_putname:
    	putname(name);
    	return fd;
    }
    
    SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
    		struct mq_attr __user *, u_attr)
    {
    	struct mq_attr attr;
    	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
    		return -EFAULT;
    
    	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
    }
    
    SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
    {
    	int err;
    	struct filename *name;
    	struct dentry *dentry;
    	struct inode *inode = NULL;
    	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
    	struct vfsmount *mnt = ipc_ns->mq_mnt;
    
    	name = getname(u_name);
    	if (IS_ERR(name))
    		return PTR_ERR(name);
    
    	audit_inode_parent_hidden(name, mnt->mnt_root);
    	err = mnt_want_write(mnt);
    	if (err)
    		goto out_name;
    	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
    	dentry = lookup_one_len(name->name, mnt->mnt_root,
    				strlen(name->name));
    	if (IS_ERR(dentry)) {
    		err = PTR_ERR(dentry);
    		goto out_unlock;
    	}
    
    	inode = d_inode(dentry);
    	if (!inode) {
    		err = -ENOENT;
    	} else {
    		ihold(inode);
    		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
    	}
    	dput(dentry);
    
    out_unlock:
    	inode_unlock(d_inode(mnt->mnt_root));
    	if (inode)
    		iput(inode);
    	mnt_drop_write(mnt);
    out_name:
    	putname(name);
    
    	return err;
    }
    
    /* Pipelined send and receive functions.
     *
     * If a receiver finds no waiting message, then it registers itself in the
     * list of waiting receivers. A sender checks that list before adding the new
     * message into the message array. If there is a waiting receiver, then it
     * bypasses the message array and directly hands the message over to the
     * receiver. The receiver accepts the message and returns without grabbing the
     * queue spinlock:
     *
     * - Set pointer to message.
     * - Queue the receiver task for later wakeup (without the info->lock).
     * - Update its state to STATE_READY. Now the receiver can continue.
     * - Wake up the process after the lock is dropped. Should the process wake up
     *   before this wakeup (due to a timeout or a signal) it will either see
     *   STATE_READY and continue or acquire the lock to check the state again.
     *
     * The same algorithm is used for senders.
     */
    
    /* pipelined_send() - send a message directly to the task waiting in
     * sys_mq_timedreceive() (without inserting message into a queue).
     */
    static inline void pipelined_send(struct wake_q_head *wake_q,
    				  struct mqueue_inode_info *info,
    				  struct msg_msg *message,
    				  struct ext_wait_queue *receiver)
    {
    	receiver->msg = message;
    	list_del(&receiver->list);
    	wake_q_add(wake_q, receiver->task);
    	/*
    	 * Rely on the implicit cmpxchg barrier from wake_q_add such
    	 * that we can ensure that updating receiver->state is the last
    	 * write operation: As once set, the receiver can continue,
    	 * and if we don't have the reference count from the wake_q,
    	 * yet, at that point we can later have a use-after-free
    	 * condition and bogus wakeup.
    	 */
    	receiver->state = STATE_READY;
    }
    
    /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
     * gets its message and put to the queue (we have one free place for sure). */
    static inline void pipelined_receive(struct wake_q_head *wake_q,
    				     struct mqueue_inode_info *info)
    {
    	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
    
    	if (!sender) {
    		/* for poll */
    		wake_up_interruptible(&info->wait_q);
    		return;
    	}
    	if (msg_insert(sender->msg, info))
    		return;
    
    	list_del(&sender->list);
    	wake_q_add(wake_q, sender->task);
    	sender->state = STATE_READY;
    }
    
    static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
    		size_t msg_len, unsigned int msg_prio,
    		struct timespec64 *ts)
    {
    	struct fd f;
    	struct inode *inode;
    	struct ext_wait_queue wait;
    	struct ext_wait_queue *receiver;
    	struct msg_msg *msg_ptr;
    	struct mqueue_inode_info *info;
    	ktime_t expires, *timeout = NULL;
    	struct posix_msg_tree_node *new_leaf = NULL;
    	int ret = 0;
    	DEFINE_WAKE_Q(wake_q);
    
    	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
    		return -EINVAL;
    
    	if (ts) {
    		expires = timespec64_to_ktime(*ts);
    		timeout = &expires;
    	}
    
    	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
    
    	f = fdget(mqdes);
    	if (unlikely(!f.file)) {
    		ret = -EBADF;
    		goto out;
    	}
    
    	inode = file_inode(f.file);
    	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
    		ret = -EBADF;
    		goto out_fput;
    	}
    	info = MQUEUE_I(inode);
    	audit_file(f.file);
    
    	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
    		ret = -EBADF;
    		goto out_fput;
    	}
    
    	if (unlikely(msg_len > info->attr.mq_msgsize)) {
    		ret = -EMSGSIZE;
    		goto out_fput;
    	}
    
    	/* First try to allocate memory, before doing anything with
    	 * existing queues. */
    	msg_ptr = load_msg(u_msg_ptr, msg_len);
    	if (IS_ERR(msg_ptr)) {
    		ret = PTR_ERR(msg_ptr);
    		goto out_fput;
    	}
    	msg_ptr->m_ts = msg_len;
    	msg_ptr->m_type = msg_prio;
    
    	/*
    	 * msg_insert really wants us to have a valid, spare node struct so
    	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
    	 * fall back to that if necessary.
    	 */
    	if (!info->node_cache)
    		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
    
    	spin_lock(&info->lock);
    
    	if (!info->node_cache && new_leaf) {
    		/* Save our speculative allocation into the cache */
    		INIT_LIST_HEAD(&new_leaf->msg_list);
    		info->node_cache = new_leaf;
    		new_leaf = NULL;
    	} else {
    		kfree(new_leaf);
    	}
    
    	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
    		if (f.file->f_flags & O_NONBLOCK) {
    			ret = -EAGAIN;
    		} else {
    			wait.task = current;
    			wait.msg = (void *) msg_ptr;
    			wait.state = STATE_NONE;
    			ret = wq_sleep(info, SEND, timeout, &wait);
    			/*
    			 * wq_sleep must be called with info->lock held, and
    			 * returns with the lock released
    			 */
    			goto out_free;
    		}
    	} else {
    		receiver = wq_get_first_waiter(info, RECV);
    		if (receiver) {
    			pipelined_send(&wake_q, info, msg_ptr, receiver);
    		} else {
    			/* adds message to the queue */
    			ret = msg_insert(msg_ptr, info);
    			if (ret)
    				goto out_unlock;
    			__do_notify(info);
    		}
    		inode->i_atime = inode->i_mtime = inode->i_ctime =
    				current_time(inode);
    	}
    out_unlock:
    	spin_unlock(&info->lock);
    	wake_up_q(&wake_q);
    out_free:
    	if (ret)
    		free_msg(msg_ptr);
    out_fput:
    	fdput(f);
    out:
    	return ret;
    }
    
    static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
    		size_t msg_len, unsigned int __user *u_msg_prio,
    		struct timespec64 *ts)
    {
    	ssize_t ret;
    	struct msg_msg *msg_ptr;
    	struct fd f;
    	struct inode *inode;
    	struct mqueue_inode_info *info;
    	struct ext_wait_queue wait;
    	ktime_t expires, *timeout = NULL;
    	struct posix_msg_tree_node *new_leaf = NULL;
    
    	if (ts) {
    		expires = timespec64_to_ktime(*ts);
    		timeout = &expires;
    	}
    
    	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
    
    	f = fdget(mqdes);
    	if (unlikely(!f.file)) {
    		ret = -EBADF;
    		goto out;
    	}
    
    	inode = file_inode(f.file);
    	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
    		ret = -EBADF;
    		goto out_fput;
    	}
    	info = MQUEUE_I(inode);
    	audit_file(f.file);
    
    	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
    		ret = -EBADF;
    		goto out_fput;
    	}
    
    	/* checks if buffer is big enough */
    	if (unlikely(msg_len < info->attr.mq_msgsize)) {
    		ret = -EMSGSIZE;
    		goto out_fput;
    	}
    
    	/*
    	 * msg_insert really wants us to have a valid, spare node struct so
    	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
    	 * fall back to that if necessary.
    	 */
    	if (!info->node_cache)
    		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
    
    	spin_lock(&info->lock);
    
    	if (!info->node_cache && new_leaf) {
    		/* Save our speculative allocation into the cache */
    		INIT_LIST_HEAD(&new_leaf->msg_list);
    		info->node_cache = new_leaf;
    	} else {
    		kfree(new_leaf);
    	}
    
    	if (info->attr.mq_curmsgs == 0) {
    		if (f.file->f_flags & O_NONBLOCK) {
    			spin_unlock(&info->lock);
    			ret = -EAGAIN;
    		} else {
    			wait.task = current;
    			wait.state = STATE_NONE;
    			ret = wq_sleep(info, RECV, timeout, &wait);
    			msg_ptr = wait.msg;
    		}
    	} else {
    		DEFINE_WAKE_Q(wake_q);
    
    		msg_ptr = msg_get(info);
    
    		inode->i_atime = inode->i_mtime = inode->i_ctime =
    				current_time(inode);
    
    		/* There is now free space in queue. */
    		pipelined_receive(&wake_q, info);
    		spin_unlock(&info->lock);
    		wake_up_q(&wake_q);
    		ret = 0;
    	}
    	if (ret == 0) {
    		ret = msg_ptr->m_ts;
    
    		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
    			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
    			ret = -EFAULT;
    		}
    		free_msg(msg_ptr);
    	}
    out_fput:
    	fdput(f);
    out:
    	return ret;
    }
    
    SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
    		size_t, msg_len, unsigned int, msg_prio,
    		const struct __kernel_timespec __user *, u_abs_timeout)
    {
    	struct timespec64 ts, *p = NULL;
    	if (u_abs_timeout) {
    		int res = prepare_timeout(u_abs_timeout, &ts);
    		if (res)
    			return res;
    		p = &ts;
    	}
    	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
    }
    
    SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
    		size_t, msg_len, unsigned int __user *, u_msg_prio,
    		const struct __kernel_timespec __user *, u_abs_timeout)
    {
    	struct timespec64 ts, *p = NULL;
    	if (u_abs_timeout) {
    		int res = prepare_timeout(u_abs_timeout, &ts);
    		if (res)
    			return res;
    		p = &ts;
    	}
    	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
    }
    
    /*
     * Notes: the case when user wants us to deregister (with NULL as pointer)
     * and he isn't currently owner of notification, will be silently discarded.
     * It isn't explicitly defined in the POSIX.
     */
    static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
    {
    	int ret;
    	struct fd f;
    	struct sock *sock;
    	struct inode *inode;
    	struct mqueue_inode_info *info;
    	struct sk_buff *nc;
    
    	audit_mq_notify(mqdes, notification);
    
    	nc = NULL;
    	sock = NULL;
    	if (notification != NULL) {
    		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
    			     notification->sigev_notify != SIGEV_SIGNAL &&
    			     notification->sigev_notify != SIGEV_THREAD))
    			return -EINVAL;
    		if (notification->sigev_notify == SIGEV_SIGNAL &&
    			!valid_signal(notification->sigev_signo)) {
    			return -EINVAL;
    		}
    		if (notification->sigev_notify == SIGEV_THREAD) {
    			long timeo;
    
    			/* create the notify skb */
    			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
    			if (!nc)
    				return -ENOMEM;
    
    			if (copy_from_user(nc->data,
    					notification->sigev_value.sival_ptr,
    					NOTIFY_COOKIE_LEN)) {
    				ret = -EFAULT;
    				goto free_skb;
    			}
    
    			/* TODO: add a header? */
    			skb_put(nc, NOTIFY_COOKIE_LEN);
    			/* and attach it to the socket */
    retry:
    			f = fdget(notification->sigev_signo);
    			if (!f.file) {
    				ret = -EBADF;
    				goto out;
    			}
    			sock = netlink_getsockbyfilp(f.file);
    			fdput(f);
    			if (IS_ERR(sock)) {
    				ret = PTR_ERR(sock);
    				goto free_skb;
    			}
    
    			timeo = MAX_SCHEDULE_TIMEOUT;
    			ret = netlink_attachskb(sock, nc, &timeo, NULL);
    			if (ret == 1) {
    				sock = NULL;
    				goto retry;
    			}
    			if (ret)
    				return ret;
    		}
    	}
    
    	f = fdget(mqdes);
    	if (!f.file) {
    		ret = -EBADF;
    		goto out;
    	}
    
    	inode = file_inode(f.file);
    	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
    		ret = -EBADF;
    		goto out_fput;
    	}
    	info = MQUEUE_I(inode);
    
    	ret = 0;
    	spin_lock(&info->lock);
    	if (notification == NULL) {
    		if (info->notify_owner == task_tgid(current)) {
    			remove_notification(info);
    			inode->i_atime = inode->i_ctime = current_time(inode);
    		}
    	} else if (info->notify_owner != NULL) {
    		ret = -EBUSY;
    	} else {
    		switch (notification->sigev_notify) {
    		case SIGEV_NONE:
    			info->notify.sigev_notify = SIGEV_NONE;
    			break;
    		case SIGEV_THREAD:
    			info->notify_sock = sock;
    			info->notify_cookie = nc;
    			sock = NULL;
    			nc = NULL;
    			info->notify.sigev_notify = SIGEV_THREAD;
    			break;
    		case SIGEV_SIGNAL:
    			info->notify.sigev_signo = notification->sigev_signo;
    			info->notify.sigev_value = notification->sigev_value;
    			info->notify.sigev_notify = SIGEV_SIGNAL;
    			break;
    		}
    
    		info->notify_owner = get_pid(task_tgid(current));
    		info->notify_user_ns = get_user_ns(current_user_ns());
    		inode->i_atime = inode->i_ctime = current_time(inode);
    	}
    	spin_unlock(&info->lock);
    out_fput:
    	fdput(f);
    out:
    	if (sock)
    		netlink_detachskb(sock, nc);
    	else
    free_skb:
    		dev_kfree_skb(nc);
    
    	return ret;
    }
    
    SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
    		const struct sigevent __user *, u_notification)
    {
    	struct sigevent n, *p = NULL;
    	if (u_notification) {
    		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
    			return -EFAULT;
    		p = &n;
    	}
    	return do_mq_notify(mqdes, p);
    }
    
    static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
    {
    	struct fd f;
    	struct inode *inode;
    	struct mqueue_inode_info *info;
    
    	if (new && (new->mq_flags & (~O_NONBLOCK)))
    		return -EINVAL;
    
    	f = fdget(mqdes);
    	if (!f.file)
    		return -EBADF;
    
    	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
    		fdput(f);
    		return -EBADF;
    	}
    
    	inode = file_inode(f.file);
    	info = MQUEUE_I(inode);
    
    	spin_lock(&info->lock);
    
    	if (old) {
    		*old = info->attr;
    		old->mq_flags = f.file->f_flags & O_NONBLOCK;
    	}
    	if (new) {
    		audit_mq_getsetattr(mqdes, new);
    		spin_lock(&f.file->f_lock);
    		if (new->mq_flags & O_NONBLOCK)
    			f.file->f_flags |= O_NONBLOCK;
    		else
    			f.file->f_flags &= ~O_NONBLOCK;
    		spin_unlock(&f.file->f_lock);
    
    		inode->i_atime = inode->i_ctime = current_time(inode);
    	}
    
    	spin_unlock(&info->lock);
    	fdput(f);
    	return 0;
    }
    
    SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
    		const struct mq_attr __user *, u_mqstat,
    		struct mq_attr __user *, u_omqstat)
    {
    	int ret;
    	struct mq_attr mqstat, omqstat;
    	struct mq_attr *new = NULL, *old = NULL;
    
    	if (u_mqstat) {
    		new = &mqstat;
    		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
    			return -EFAULT;
    	}
    	if (u_omqstat)
    		old = &omqstat;
    
    	ret = do_mq_getsetattr(mqdes, new, old);
    	if (ret || !old)
    		return ret;
    
    	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
    		return -EFAULT;
    	return 0;
    }
    
    #ifdef CONFIG_COMPAT
    
    struct compat_mq_attr {
    	compat_long_t mq_flags;      /* message queue flags		     */
    	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
    	compat_long_t mq_msgsize;    /* maximum message size		     */
    	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
    	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
    };
    
    static inline int get_compat_mq_attr(struct mq_attr *attr,
    			const struct compat_mq_attr __user *uattr)
    {
    	struct compat_mq_attr v;
    
    	if (copy_from_user(&v, uattr, sizeof(*uattr)))
    		return -EFAULT;
    
    	memset(attr, 0, sizeof(*attr));
    	attr->mq_flags = v.mq_flags;
    	attr->mq_maxmsg = v.mq_maxmsg;
    	attr->mq_msgsize = v.mq_msgsize;
    	attr->mq_curmsgs = v.mq_curmsgs;
    	return 0;
    }
    
    static inline int put_compat_mq_attr(const struct mq_attr *attr,
    			struct compat_mq_attr __user *uattr)
    {
    	struct compat_mq_attr v;
    
    	memset(&v, 0, sizeof(v));
    	v.mq_flags = attr->mq_flags;
    	v.mq_maxmsg = attr->mq_maxmsg;
    	v.mq_msgsize = attr->mq_msgsize;
    	v.mq_curmsgs = attr->mq_curmsgs;
    	if (copy_to_user(uattr, &v, sizeof(*uattr)))
    		return -EFAULT;
    	return 0;
    }
    
    COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
    		       int, oflag, compat_mode_t, mode,
    		       struct compat_mq_attr __user *, u_attr)
    {
    	struct mq_attr attr, *p = NULL;
    	if (u_attr && oflag & O_CREAT) {
    		p = &attr;
    		if (get_compat_mq_attr(&attr, u_attr))
    			return -EFAULT;
    	}
    	return do_mq_open(u_name, oflag, mode, p);
    }
    
    COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
    		       const struct compat_sigevent __user *, u_notification)
    {
    	struct sigevent n, *p = NULL;
    	if (u_notification) {
    		if (get_compat_sigevent(&n, u_notification))
    			return -EFAULT;
    		if (n.sigev_notify == SIGEV_THREAD)
    			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
    		p = &n;
    	}
    	return do_mq_notify(mqdes, p);
    }
    
    COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
    		       const struct compat_mq_attr __user *, u_mqstat,
    		       struct compat_mq_attr __user *, u_omqstat)
    {
    	int ret;
    	struct mq_attr mqstat, omqstat;
    	struct mq_attr *new = NULL, *old = NULL;
    
    	if (u_mqstat) {
    		new = &mqstat;
    		if (get_compat_mq_attr(new, u_mqstat))
    			return -EFAULT;
    	}
    	if (u_omqstat)
    		old = &omqstat;
    
    	ret = do_mq_getsetattr(mqdes, new, old);
    	if (ret || !old)
    		return ret;
    
    	if (put_compat_mq_attr(old, u_omqstat))
    		return -EFAULT;
    	return 0;
    }
    #endif
    
    #ifdef CONFIG_COMPAT_32BIT_TIME
    static int compat_prepare_timeout(const struct old_timespec32 __user *p,
    				   struct timespec64 *ts)
    {
    	if (get_old_timespec32(ts, p))
    		return -EFAULT;
    	if (!timespec64_valid(ts))
    		return -EINVAL;
    	return 0;
    }
    
    SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
    		const char __user *, u_msg_ptr,
    		unsigned int, msg_len, unsigned int, msg_prio,
    		const struct old_timespec32 __user *, u_abs_timeout)
    {
    	struct timespec64 ts, *p = NULL;
    	if (u_abs_timeout) {
    		int res = compat_prepare_timeout(u_abs_timeout, &ts);
    		if (res)
    			return res;
    		p = &ts;
    	}
    	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
    }
    
    SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
    		char __user *, u_msg_ptr,
    		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
    		const struct old_timespec32 __user *, u_abs_timeout)
    {
    	struct timespec64 ts, *p = NULL;
    	if (u_abs_timeout) {
    		int res = compat_prepare_timeout(u_abs_timeout, &ts);
    		if (res)
    			return res;
    		p = &ts;
    	}
    	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
    }
    #endif
    
    static const struct inode_operations mqueue_dir_inode_operations = {
    	.lookup = simple_lookup,
    	.create = mqueue_create,
    	.unlink = mqueue_unlink,
    };
    
    static const struct file_operations mqueue_file_operations = {
    	.flush = mqueue_flush_file,
    	.poll = mqueue_poll_file,
    	.read = mqueue_read_file,
    	.llseek = default_llseek,
    };
    
    static const struct super_operations mqueue_super_ops = {
    	.alloc_inode = mqueue_alloc_inode,
    	.free_inode = mqueue_free_inode,
    	.evict_inode = mqueue_evict_inode,
    	.statfs = simple_statfs,
    };
    
    static const struct fs_context_operations mqueue_fs_context_ops = {
    	.free		= mqueue_fs_context_free,
    	.get_tree	= mqueue_get_tree,
    };
    
    static struct file_system_type mqueue_fs_type = {
    	.name			= "mqueue",
    	.init_fs_context	= mqueue_init_fs_context,
    	.kill_sb		= kill_litter_super,
    	.fs_flags		= FS_USERNS_MOUNT,
    };
    
    int mq_init_ns(struct ipc_namespace *ns)
    {
    	struct vfsmount *m;
    
    	ns->mq_queues_count  = 0;
    	ns->mq_queues_max    = DFLT_QUEUESMAX;
    	ns->mq_msg_max       = DFLT_MSGMAX;
    	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
    	ns->mq_msg_default   = DFLT_MSG;
    	ns->mq_msgsize_default  = DFLT_MSGSIZE;
    
    	m = mq_create_mount(ns);
    	if (IS_ERR(m))
    		return PTR_ERR(m);
    	ns->mq_mnt = m;
    	return 0;
    }
    
    void mq_clear_sbinfo(struct ipc_namespace *ns)
    {
    	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
    }
    
    void mq_put_mnt(struct ipc_namespace *ns)
    {
    	kern_unmount(ns->mq_mnt);
    }
    
    static int __init init_mqueue_fs(void)
    {
    	int error;
    
    	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
    				sizeof(struct mqueue_inode_info), 0,
    				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
    	if (mqueue_inode_cachep == NULL)
    		return -ENOMEM;
    
    	/* ignore failures - they are not fatal */
    	mq_sysctl_table = mq_register_sysctl_table();
    
    	error = register_filesystem(&mqueue_fs_type);
    	if (error)
    		goto out_sysctl;
    
    	spin_lock_init(&mq_lock);
    
    	error = mq_init_ns(&init_ipc_ns);
    	if (error)
    		goto out_filesystem;
    
    	return 0;
    
    out_filesystem:
    	unregister_filesystem(&mqueue_fs_type);
    out_sysctl:
    	if (mq_sysctl_table)
    		unregister_sysctl_table(mq_sysctl_table);
    	kmem_cache_destroy(mqueue_inode_cachep);
    	return error;
    }
    
    device_initcall(init_mqueue_fs);
    

      

  • 相关阅读:
    学习方法:费曼学习方法
    学习方法:天才的秘密
    学习方法:学习的大致过程
    OS:VM虚拟机连不上网络
    cpp:argc和argv的应用
    baidu:{{!!}}
    os:windows许可证书位置
    书法:练字的心得体会
    修复Python终端中敲击方向键显示 [ ^[[A, ^[[B, ^[[C, ^[[D ]
    jquery下removeClass(“oldClassName”).addClass("newClassName")的问题
  • 原文地址:https://www.cnblogs.com/still-smile/p/12040576.html
Copyright © 2011-2022 走看看