zoukankan      html  css  js  c++  java
  • IPC之sem.c源码解读

    // SPDX-License-Identifier: GPL-2.0
    /*
     * linux/ipc/sem.c
     * Copyright (C) 1992 Krishna Balasubramanian
     * Copyright (C) 1995 Eric Schenk, Bruno Haible
     *
     * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
     *
     * SMP-threaded, sysctl's added
     * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
     * Enforced range limit on SEM_UNDO
     * (c) 2001 Red Hat Inc
     * Lockless wakeup
     * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
     * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
     * Further wakeup optimizations, documentation
     * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
     *
     * support for audit of ipc object properties and permission changes
     * Dustin Kirkland <dustin.kirkland@us.ibm.com>
     *
     * namespaces support
     * OpenVZ, SWsoft Inc.
     * Pavel Emelianov <xemul@openvz.org>
     *
     * Implementation notes: (May 2010)
     * This file implements System V semaphores.
     *
     * User space visible behavior:
     * - FIFO ordering for semop() operations (just FIFO, not starvation
     *   protection)
     * - multiple semaphore operations that alter the same semaphore in
     *   one semop() are handled.
     * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
     *   SETALL calls.
     * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
     * - undo adjustments at process exit are limited to 0..SEMVMX.
     * - namespace are supported.
     * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
     *   to /proc/sys/kernel/sem.
     * - statistics about the usage are reported in /proc/sysvipc/sem.
     *
     * Internals:
     * - scalability:
     *   - all global variables are read-mostly.
     *   - semop() calls and semctl(RMID) are synchronized by RCU.
     *   - most operations do write operations (actually: spin_lock calls) to
     *     the per-semaphore array structure.
     *   Thus: Perfect SMP scaling between independent semaphore arrays.
     *         If multiple semaphores in one array are used, then cache line
     *         trashing on the semaphore array spinlock will limit the scaling.
     * - semncnt and semzcnt are calculated on demand in count_semcnt()
     * - the task that performs a successful semop() scans the list of all
     *   sleeping tasks and completes any pending operations that can be fulfilled.
     *   Semaphores are actively given to waiting tasks (necessary for FIFO).
     *   (see update_queue())
     * - To improve the scalability, the actual wake-up calls are performed after
     *   dropping all locks. (see wake_up_sem_queue_prepare())
     * - All work is done by the waker, the woken up task does not have to do
     *   anything - not even acquiring a lock or dropping a refcount.
     * - A woken up task may not even touch the semaphore array anymore, it may
     *   have been destroyed already by a semctl(RMID).
     * - UNDO values are stored in an array (one per process and per
     *   semaphore array, lazily allocated). For backwards compatibility, multiple
     *   modes for the UNDO variables are supported (per process, per thread)
     *   (see copy_semundo, CLONE_SYSVSEM)
     * - There are two lists of the pending operations: a per-array list
     *   and per-semaphore list (stored in the array). This allows to achieve FIFO
     *   ordering without always scanning all pending operations.
     *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
     */
    
    #include <linux/compat.h>
    #include <linux/slab.h>
    #include <linux/spinlock.h>
    #include <linux/init.h>
    #include <linux/proc_fs.h>
    #include <linux/time.h>
    #include <linux/security.h>
    #include <linux/syscalls.h>
    #include <linux/audit.h>
    #include <linux/capability.h>
    #include <linux/seq_file.h>
    #include <linux/rwsem.h>
    #include <linux/nsproxy.h>
    #include <linux/ipc_namespace.h>
    #include <linux/sched/wake_q.h>
    #include <linux/nospec.h>
    #include <linux/rhashtable.h>
    
    #include <linux/uaccess.h>
    #include "util.h"
    
    /* One semaphore structure for each semaphore in the system. */
    struct sem {
    	int	semval;		/* current value */
    	/*
    	 * PID of the process that last modified the semaphore. For
    	 * Linux, specifically these are:
    	 *  - semop
    	 *  - semctl, via SETVAL and SETALL.
    	 *  - at task exit when performing undo adjustments (see exit_sem).
    	 */
    	struct pid *sempid;
    	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
    	struct list_head pending_alter; /* pending single-sop operations */
    					/* that alter the semaphore */
    	struct list_head pending_const; /* pending single-sop operations */
    					/* that do not alter the semaphore*/
    	time64_t	 sem_otime;	/* candidate for sem_otime */
    } ____cacheline_aligned_in_smp;
    
    /* One sem_array data structure for each set of semaphores in the system. */
    struct sem_array {
    	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
    	time64_t		sem_ctime;	/* create/last semctl() time */
    	struct list_head	pending_alter;	/* pending operations */
    						/* that alter the array */
    	struct list_head	pending_const;	/* pending complex operations */
    						/* that do not alter semvals */
    	struct list_head	list_id;	/* undo requests on this array */
    	int			sem_nsems;	/* no. of semaphores in array */
    	int			complex_count;	/* pending complex operations */
    	unsigned int		use_global_lock;/* >0: global lock required */
    
    	struct sem		sems[];
    } __randomize_layout;
    
    /* One queue for each sleeping process in the system. */
    struct sem_queue {
    	struct list_head	list;	 /* queue of pending operations */
    	struct task_struct	*sleeper; /* this process */
    	struct sem_undo		*undo;	 /* undo structure */
    	struct pid		*pid;	 /* process id of requesting process */
    	int			status;	 /* completion status of operation */
    	struct sembuf		*sops;	 /* array of pending operations */
    	struct sembuf		*blocking; /* the operation that blocked */
    	int			nsops;	 /* number of operations */
    	bool			alter;	 /* does *sops alter the array? */
    	bool                    dupsop;	 /* sops on more than one sem_num */
    };
    
    /* Each task has a list of undo requests. They are executed automatically
     * when the process exits.
     */
    struct sem_undo {
    	struct list_head	list_proc;	/* per-process list: *
    						 * all undos from one process
    						 * rcu protected */
    	struct rcu_head		rcu;		/* rcu struct for sem_undo */
    	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
    	struct list_head	list_id;	/* per semaphore array list:
    						 * all undos for one array */
    	int			semid;		/* semaphore set identifier */
    	short			*semadj;	/* array of adjustments */
    						/* one per semaphore */
    };
    
    /* sem_undo_list controls shared access to the list of sem_undo structures
     * that may be shared among all a CLONE_SYSVSEM task group.
     */
    struct sem_undo_list {
    	refcount_t		refcnt;
    	spinlock_t		lock;
    	struct list_head	list_proc;
    };
    
    
    #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
    
    static int newary(struct ipc_namespace *, struct ipc_params *);
    static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
    #ifdef CONFIG_PROC_FS
    static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
    #endif
    
    #define SEMMSL_FAST	256 /* 512 bytes on stack */
    #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
    
    /*
     * Switching from the mode suitable for simple ops
     * to the mode for complex ops is costly. Therefore:
     * use some hysteresis
     */
    #define USE_GLOBAL_LOCK_HYSTERESIS	10
    
    /*
     * Locking:
     * a) global sem_lock() for read/write
     *	sem_undo.id_next,
     *	sem_array.complex_count,
     *	sem_array.pending{_alter,_const},
     *	sem_array.sem_undo
     *
     * b) global or semaphore sem_lock() for read/write:
     *	sem_array.sems[i].pending_{const,alter}:
     *
     * c) special:
     *	sem_undo_list.list_proc:
     *	* undo_list->lock for write
     *	* rcu for read
     *	use_global_lock:
     *	* global sem_lock() for write
     *	* either local or global sem_lock() for read.
     *
     * Memory ordering:
     * Most ordering is enforced by using spin_lock() and spin_unlock().
     * The special case is use_global_lock:
     * Setting it from non-zero to 0 is a RELEASE, this is ensured by
     * using smp_store_release().
     * Testing if it is non-zero is an ACQUIRE, this is ensured by using
     * smp_load_acquire().
     * Setting it from 0 to non-zero must be ordered with regards to
     * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
     * is inside a spin_lock() and after a write from 0 to non-zero a
     * spin_lock()+spin_unlock() is done.
     */
    
    #define sc_semmsl	sem_ctls[0]
    #define sc_semmns	sem_ctls[1]
    #define sc_semopm	sem_ctls[2]
    #define sc_semmni	sem_ctls[3]
    
    void sem_init_ns(struct ipc_namespace *ns)
    {
    	ns->sc_semmsl = SEMMSL;
    	ns->sc_semmns = SEMMNS;
    	ns->sc_semopm = SEMOPM;
    	ns->sc_semmni = SEMMNI;
    	ns->used_sems = 0;
    	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
    }
    
    #ifdef CONFIG_IPC_NS
    void sem_exit_ns(struct ipc_namespace *ns)
    {
    	free_ipcs(ns, &sem_ids(ns), freeary);
    	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
    	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
    }
    #endif
    
    void __init sem_init(void)
    {
    	sem_init_ns(&init_ipc_ns);
    	ipc_init_proc_interface("sysvipc/sem",
    				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime
    ",
    				IPC_SEM_IDS, sysvipc_sem_proc_show);
    }
    
    /**
     * unmerge_queues - unmerge queues, if possible.
     * @sma: semaphore array
     *
     * The function unmerges the wait queues if complex_count is 0.
     * It must be called prior to dropping the global semaphore array lock.
     */
    static void unmerge_queues(struct sem_array *sma)
    {
    	struct sem_queue *q, *tq;
    
    	/* complex operations still around? */
    	if (sma->complex_count)
    		return;
    	/*
    	 * We will switch back to simple mode.
    	 * Move all pending operation back into the per-semaphore
    	 * queues.
    	 */
    	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
    		struct sem *curr;
    		curr = &sma->sems[q->sops[0].sem_num];
    
    		list_add_tail(&q->list, &curr->pending_alter);
    	}
    	INIT_LIST_HEAD(&sma->pending_alter);
    }
    
    /**
     * merge_queues - merge single semop queues into global queue
     * @sma: semaphore array
     *
     * This function merges all per-semaphore queues into the global queue.
     * It is necessary to achieve FIFO ordering for the pending single-sop
     * operations when a multi-semop operation must sleep.
     * Only the alter operations must be moved, the const operations can stay.
     */
    static void merge_queues(struct sem_array *sma)
    {
    	int i;
    	for (i = 0; i < sma->sem_nsems; i++) {
    		struct sem *sem = &sma->sems[i];
    
    		list_splice_init(&sem->pending_alter, &sma->pending_alter);
    	}
    }
    
    static void sem_rcu_free(struct rcu_head *head)
    {
    	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
    	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
    
    	security_sem_free(&sma->sem_perm);
    	kvfree(sma);
    }
    
    /*
     * Enter the mode suitable for non-simple operations:
     * Caller must own sem_perm.lock.
     */
    static void complexmode_enter(struct sem_array *sma)
    {
    	int i;
    	struct sem *sem;
    
    	if (sma->use_global_lock > 0)  {
    		/*
    		 * We are already in global lock mode.
    		 * Nothing to do, just reset the
    		 * counter until we return to simple mode.
    		 */
    		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
    		return;
    	}
    	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
    
    	for (i = 0; i < sma->sem_nsems; i++) {
    		sem = &sma->sems[i];
    		spin_lock(&sem->lock);
    		spin_unlock(&sem->lock);
    	}
    }
    
    /*
     * Try to leave the mode that disallows simple operations:
     * Caller must own sem_perm.lock.
     */
    static void complexmode_tryleave(struct sem_array *sma)
    {
    	if (sma->complex_count)  {
    		/* Complex ops are sleeping.
    		 * We must stay in complex mode
    		 */
    		return;
    	}
    	if (sma->use_global_lock == 1) {
    		/*
    		 * Immediately after setting use_global_lock to 0,
    		 * a simple op can start. Thus: all memory writes
    		 * performed by the current operation must be visible
    		 * before we set use_global_lock to 0.
    		 */
    		smp_store_release(&sma->use_global_lock, 0);
    	} else {
    		sma->use_global_lock--;
    	}
    }
    
    #define SEM_GLOBAL_LOCK	(-1)
    /*
     * If the request contains only one semaphore operation, and there are
     * no complex transactions pending, lock only the semaphore involved.
     * Otherwise, lock the entire semaphore array, since we either have
     * multiple semaphores in our own semops, or we need to look at
     * semaphores from other pending complex operations.
     */
    static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
    			      int nsops)
    {
    	struct sem *sem;
    	int idx;
    
    	if (nsops != 1) {
    		/* Complex operation - acquire a full lock */
    		ipc_lock_object(&sma->sem_perm);
    
    		/* Prevent parallel simple ops */
    		complexmode_enter(sma);
    		return SEM_GLOBAL_LOCK;
    	}
    
    	/*
    	 * Only one semaphore affected - try to optimize locking.
    	 * Optimized locking is possible if no complex operation
    	 * is either enqueued or processed right now.
    	 *
    	 * Both facts are tracked by use_global_mode.
    	 */
    	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
    	sem = &sma->sems[idx];
    
    	/*
    	 * Initial check for use_global_lock. Just an optimization,
    	 * no locking, no memory barrier.
    	 */
    	if (!sma->use_global_lock) {
    		/*
    		 * It appears that no complex operation is around.
    		 * Acquire the per-semaphore lock.
    		 */
    		spin_lock(&sem->lock);
    
    		/* pairs with smp_store_release() */
    		if (!smp_load_acquire(&sma->use_global_lock)) {
    			/* fast path successful! */
    			return sops->sem_num;
    		}
    		spin_unlock(&sem->lock);
    	}
    
    	/* slow path: acquire the full lock */
    	ipc_lock_object(&sma->sem_perm);
    
    	if (sma->use_global_lock == 0) {
    		/*
    		 * The use_global_lock mode ended while we waited for
    		 * sma->sem_perm.lock. Thus we must switch to locking
    		 * with sem->lock.
    		 * Unlike in the fast path, there is no need to recheck
    		 * sma->use_global_lock after we have acquired sem->lock:
    		 * We own sma->sem_perm.lock, thus use_global_lock cannot
    		 * change.
    		 */
    		spin_lock(&sem->lock);
    
    		ipc_unlock_object(&sma->sem_perm);
    		return sops->sem_num;
    	} else {
    		/*
    		 * Not a false alarm, thus continue to use the global lock
    		 * mode. No need for complexmode_enter(), this was done by
    		 * the caller that has set use_global_mode to non-zero.
    		 */
    		return SEM_GLOBAL_LOCK;
    	}
    }
    
    static inline void sem_unlock(struct sem_array *sma, int locknum)
    {
    	if (locknum == SEM_GLOBAL_LOCK) {
    		unmerge_queues(sma);
    		complexmode_tryleave(sma);
    		ipc_unlock_object(&sma->sem_perm);
    	} else {
    		struct sem *sem = &sma->sems[locknum];
    		spin_unlock(&sem->lock);
    	}
    }
    
    /*
     * sem_lock_(check_) routines are called in the paths where the rwsem
     * is not held.
     *
     * The caller holds the RCU read lock.
     */
    static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
    {
    	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
    
    	if (IS_ERR(ipcp))
    		return ERR_CAST(ipcp);
    
    	return container_of(ipcp, struct sem_array, sem_perm);
    }
    
    static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
    							int id)
    {
    	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
    
    	if (IS_ERR(ipcp))
    		return ERR_CAST(ipcp);
    
    	return container_of(ipcp, struct sem_array, sem_perm);
    }
    
    static inline void sem_lock_and_putref(struct sem_array *sma)
    {
    	sem_lock(sma, NULL, -1);
    	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    }
    
    static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
    {
    	ipc_rmid(&sem_ids(ns), &s->sem_perm);
    }
    
    static struct sem_array *sem_alloc(size_t nsems)
    {
    	struct sem_array *sma;
    
    	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
    		return NULL;
    
    	sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
    	if (unlikely(!sma))
    		return NULL;
    
    	return sma;
    }
    
    /**
     * newary - Create a new semaphore set
     * @ns: namespace
     * @params: ptr to the structure that contains key, semflg and nsems
     *
     * Called with sem_ids.rwsem held (as a writer)
     */
    static int newary(struct ipc_namespace *ns, struct ipc_params *params)
    {
    	int retval;
    	struct sem_array *sma;
    	key_t key = params->key;
    	int nsems = params->u.nsems;
    	int semflg = params->flg;
    	int i;
    
    	if (!nsems)
    		return -EINVAL;
    	if (ns->used_sems + nsems > ns->sc_semmns)
    		return -ENOSPC;
    
    	sma = sem_alloc(nsems);
    	if (!sma)
    		return -ENOMEM;
    
    	sma->sem_perm.mode = (semflg & S_IRWXUGO);
    	sma->sem_perm.key = key;
    
    	sma->sem_perm.security = NULL;
    	retval = security_sem_alloc(&sma->sem_perm);
    	if (retval) {
    		kvfree(sma);
    		return retval;
    	}
    
    	for (i = 0; i < nsems; i++) {
    		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
    		INIT_LIST_HEAD(&sma->sems[i].pending_const);
    		spin_lock_init(&sma->sems[i].lock);
    	}
    
    	sma->complex_count = 0;
    	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
    	INIT_LIST_HEAD(&sma->pending_alter);
    	INIT_LIST_HEAD(&sma->pending_const);
    	INIT_LIST_HEAD(&sma->list_id);
    	sma->sem_nsems = nsems;
    	sma->sem_ctime = ktime_get_real_seconds();
    
    	/* ipc_addid() locks sma upon success. */
    	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
    	if (retval < 0) {
    		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    		return retval;
    	}
    	ns->used_sems += nsems;
    
    	sem_unlock(sma, -1);
    	rcu_read_unlock();
    
    	return sma->sem_perm.id;
    }
    
    
    /*
     * Called with sem_ids.rwsem and ipcp locked.
     */
    static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
    				struct ipc_params *params)
    {
    	struct sem_array *sma;
    
    	sma = container_of(ipcp, struct sem_array, sem_perm);
    	if (params->u.nsems > sma->sem_nsems)
    		return -EINVAL;
    
    	return 0;
    }
    
    long ksys_semget(key_t key, int nsems, int semflg)
    {
    	struct ipc_namespace *ns;
    	static const struct ipc_ops sem_ops = {
    		.getnew = newary,
    		.associate = security_sem_associate,
    		.more_checks = sem_more_checks,
    	};
    	struct ipc_params sem_params;
    
    	ns = current->nsproxy->ipc_ns;
    
    	if (nsems < 0 || nsems > ns->sc_semmsl)
    		return -EINVAL;
    
    	sem_params.key = key;
    	sem_params.flg = semflg;
    	sem_params.u.nsems = nsems;
    
    	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
    }
    
    SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
    {
    	return ksys_semget(key, nsems, semflg);
    }
    
    /**
     * perform_atomic_semop[_slow] - Attempt to perform semaphore
     *                               operations on a given array.
     * @sma: semaphore array
     * @q: struct sem_queue that describes the operation
     *
     * Caller blocking are as follows, based the value
     * indicated by the semaphore operation (sem_op):
     *
     *  (1) >0 never blocks.
     *  (2)  0 (wait-for-zero operation): semval is non-zero.
     *  (3) <0 attempting to decrement semval to a value smaller than zero.
     *
     * Returns 0 if the operation was possible.
     * Returns 1 if the operation is impossible, the caller must sleep.
     * Returns <0 for error codes.
     */
    static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
    {
    	int result, sem_op, nsops;
    	struct pid *pid;
    	struct sembuf *sop;
    	struct sem *curr;
    	struct sembuf *sops;
    	struct sem_undo *un;
    
    	sops = q->sops;
    	nsops = q->nsops;
    	un = q->undo;
    
    	for (sop = sops; sop < sops + nsops; sop++) {
    		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
    		curr = &sma->sems[idx];
    		sem_op = sop->sem_op;
    		result = curr->semval;
    
    		if (!sem_op && result)
    			goto would_block;
    
    		result += sem_op;
    		if (result < 0)
    			goto would_block;
    		if (result > SEMVMX)
    			goto out_of_range;
    
    		if (sop->sem_flg & SEM_UNDO) {
    			int undo = un->semadj[sop->sem_num] - sem_op;
    			/* Exceeding the undo range is an error. */
    			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
    				goto out_of_range;
    			un->semadj[sop->sem_num] = undo;
    		}
    
    		curr->semval = result;
    	}
    
    	sop--;
    	pid = q->pid;
    	while (sop >= sops) {
    		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
    		sop--;
    	}
    
    	return 0;
    
    out_of_range:
    	result = -ERANGE;
    	goto undo;
    
    would_block:
    	q->blocking = sop;
    
    	if (sop->sem_flg & IPC_NOWAIT)
    		result = -EAGAIN;
    	else
    		result = 1;
    
    undo:
    	sop--;
    	while (sop >= sops) {
    		sem_op = sop->sem_op;
    		sma->sems[sop->sem_num].semval -= sem_op;
    		if (sop->sem_flg & SEM_UNDO)
    			un->semadj[sop->sem_num] += sem_op;
    		sop--;
    	}
    
    	return result;
    }
    
    static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
    {
    	int result, sem_op, nsops;
    	struct sembuf *sop;
    	struct sem *curr;
    	struct sembuf *sops;
    	struct sem_undo *un;
    
    	sops = q->sops;
    	nsops = q->nsops;
    	un = q->undo;
    
    	if (unlikely(q->dupsop))
    		return perform_atomic_semop_slow(sma, q);
    
    	/*
    	 * We scan the semaphore set twice, first to ensure that the entire
    	 * operation can succeed, therefore avoiding any pointless writes
    	 * to shared memory and having to undo such changes in order to block
    	 * until the operations can go through.
    	 */
    	for (sop = sops; sop < sops + nsops; sop++) {
    		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
    
    		curr = &sma->sems[idx];
    		sem_op = sop->sem_op;
    		result = curr->semval;
    
    		if (!sem_op && result)
    			goto would_block; /* wait-for-zero */
    
    		result += sem_op;
    		if (result < 0)
    			goto would_block;
    
    		if (result > SEMVMX)
    			return -ERANGE;
    
    		if (sop->sem_flg & SEM_UNDO) {
    			int undo = un->semadj[sop->sem_num] - sem_op;
    
    			/* Exceeding the undo range is an error. */
    			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
    				return -ERANGE;
    		}
    	}
    
    	for (sop = sops; sop < sops + nsops; sop++) {
    		curr = &sma->sems[sop->sem_num];
    		sem_op = sop->sem_op;
    		result = curr->semval;
    
    		if (sop->sem_flg & SEM_UNDO) {
    			int undo = un->semadj[sop->sem_num] - sem_op;
    
    			un->semadj[sop->sem_num] = undo;
    		}
    		curr->semval += sem_op;
    		ipc_update_pid(&curr->sempid, q->pid);
    	}
    
    	return 0;
    
    would_block:
    	q->blocking = sop;
    	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
    }
    
    static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
    					     struct wake_q_head *wake_q)
    {
    	wake_q_add(wake_q, q->sleeper);
    	/*
    	 * Rely on the above implicit barrier, such that we can
    	 * ensure that we hold reference to the task before setting
    	 * q->status. Otherwise we could race with do_exit if the
    	 * task is awoken by an external event before calling
    	 * wake_up_process().
    	 */
    	WRITE_ONCE(q->status, error);
    }
    
    static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
    {
    	list_del(&q->list);
    	if (q->nsops > 1)
    		sma->complex_count--;
    }
    
    /** check_restart(sma, q)
     * @sma: semaphore array
     * @q: the operation that just completed
     *
     * update_queue is O(N^2) when it restarts scanning the whole queue of
     * waiting operations. Therefore this function checks if the restart is
     * really necessary. It is called after a previously waiting operation
     * modified the array.
     * Note that wait-for-zero operations are handled without restart.
     */
    static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
    {
    	/* pending complex alter operations are too difficult to analyse */
    	if (!list_empty(&sma->pending_alter))
    		return 1;
    
    	/* we were a sleeping complex operation. Too difficult */
    	if (q->nsops > 1)
    		return 1;
    
    	/* It is impossible that someone waits for the new value:
    	 * - complex operations always restart.
    	 * - wait-for-zero are handled seperately.
    	 * - q is a previously sleeping simple operation that
    	 *   altered the array. It must be a decrement, because
    	 *   simple increments never sleep.
    	 * - If there are older (higher priority) decrements
    	 *   in the queue, then they have observed the original
    	 *   semval value and couldn't proceed. The operation
    	 *   decremented to value - thus they won't proceed either.
    	 */
    	return 0;
    }
    
    /**
     * wake_const_ops - wake up non-alter tasks
     * @sma: semaphore array.
     * @semnum: semaphore that was modified.
     * @wake_q: lockless wake-queue head.
     *
     * wake_const_ops must be called after a semaphore in a semaphore array
     * was set to 0. If complex const operations are pending, wake_const_ops must
     * be called with semnum = -1, as well as with the number of each modified
     * semaphore.
     * The tasks that must be woken up are added to @wake_q. The return code
     * is stored in q->pid.
     * The function returns 1 if at least one operation was completed successfully.
     */
    static int wake_const_ops(struct sem_array *sma, int semnum,
    			  struct wake_q_head *wake_q)
    {
    	struct sem_queue *q, *tmp;
    	struct list_head *pending_list;
    	int semop_completed = 0;
    
    	if (semnum == -1)
    		pending_list = &sma->pending_const;
    	else
    		pending_list = &sma->sems[semnum].pending_const;
    
    	list_for_each_entry_safe(q, tmp, pending_list, list) {
    		int error = perform_atomic_semop(sma, q);
    
    		if (error > 0)
    			continue;
    		/* operation completed, remove from queue & wakeup */
    		unlink_queue(sma, q);
    
    		wake_up_sem_queue_prepare(q, error, wake_q);
    		if (error == 0)
    			semop_completed = 1;
    	}
    
    	return semop_completed;
    }
    
    /**
     * do_smart_wakeup_zero - wakeup all wait for zero tasks
     * @sma: semaphore array
     * @sops: operations that were performed
     * @nsops: number of operations
     * @wake_q: lockless wake-queue head
     *
     * Checks all required queue for wait-for-zero operations, based
     * on the actual changes that were performed on the semaphore array.
     * The function returns 1 if at least one operation was completed successfully.
     */
    static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
    				int nsops, struct wake_q_head *wake_q)
    {
    	int i;
    	int semop_completed = 0;
    	int got_zero = 0;
    
    	/* first: the per-semaphore queues, if known */
    	if (sops) {
    		for (i = 0; i < nsops; i++) {
    			int num = sops[i].sem_num;
    
    			if (sma->sems[num].semval == 0) {
    				got_zero = 1;
    				semop_completed |= wake_const_ops(sma, num, wake_q);
    			}
    		}
    	} else {
    		/*
    		 * No sops means modified semaphores not known.
    		 * Assume all were changed.
    		 */
    		for (i = 0; i < sma->sem_nsems; i++) {
    			if (sma->sems[i].semval == 0) {
    				got_zero = 1;
    				semop_completed |= wake_const_ops(sma, i, wake_q);
    			}
    		}
    	}
    	/*
    	 * If one of the modified semaphores got 0,
    	 * then check the global queue, too.
    	 */
    	if (got_zero)
    		semop_completed |= wake_const_ops(sma, -1, wake_q);
    
    	return semop_completed;
    }
    
    
    /**
     * update_queue - look for tasks that can be completed.
     * @sma: semaphore array.
     * @semnum: semaphore that was modified.
     * @wake_q: lockless wake-queue head.
     *
     * update_queue must be called after a semaphore in a semaphore array
     * was modified. If multiple semaphores were modified, update_queue must
     * be called with semnum = -1, as well as with the number of each modified
     * semaphore.
     * The tasks that must be woken up are added to @wake_q. The return code
     * is stored in q->pid.
     * The function internally checks if const operations can now succeed.
     *
     * The function return 1 if at least one semop was completed successfully.
     */
    static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
    {
    	struct sem_queue *q, *tmp;
    	struct list_head *pending_list;
    	int semop_completed = 0;
    
    	if (semnum == -1)
    		pending_list = &sma->pending_alter;
    	else
    		pending_list = &sma->sems[semnum].pending_alter;
    
    again:
    	list_for_each_entry_safe(q, tmp, pending_list, list) {
    		int error, restart;
    
    		/* If we are scanning the single sop, per-semaphore list of
    		 * one semaphore and that semaphore is 0, then it is not
    		 * necessary to scan further: simple increments
    		 * that affect only one entry succeed immediately and cannot
    		 * be in the  per semaphore pending queue, and decrements
    		 * cannot be successful if the value is already 0.
    		 */
    		if (semnum != -1 && sma->sems[semnum].semval == 0)
    			break;
    
    		error = perform_atomic_semop(sma, q);
    
    		/* Does q->sleeper still need to sleep? */
    		if (error > 0)
    			continue;
    
    		unlink_queue(sma, q);
    
    		if (error) {
    			restart = 0;
    		} else {
    			semop_completed = 1;
    			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
    			restart = check_restart(sma, q);
    		}
    
    		wake_up_sem_queue_prepare(q, error, wake_q);
    		if (restart)
    			goto again;
    	}
    	return semop_completed;
    }
    
    /**
     * set_semotime - set sem_otime
     * @sma: semaphore array
     * @sops: operations that modified the array, may be NULL
     *
     * sem_otime is replicated to avoid cache line trashing.
     * This function sets one instance to the current time.
     */
    static void set_semotime(struct sem_array *sma, struct sembuf *sops)
    {
    	if (sops == NULL) {
    		sma->sems[0].sem_otime = ktime_get_real_seconds();
    	} else {
    		sma->sems[sops[0].sem_num].sem_otime =
    						ktime_get_real_seconds();
    	}
    }
    
    /**
     * do_smart_update - optimized update_queue
     * @sma: semaphore array
     * @sops: operations that were performed
     * @nsops: number of operations
     * @otime: force setting otime
     * @wake_q: lockless wake-queue head
     *
     * do_smart_update() does the required calls to update_queue and wakeup_zero,
     * based on the actual changes that were performed on the semaphore array.
     * Note that the function does not do the actual wake-up: the caller is
     * responsible for calling wake_up_q().
     * It is safe to perform this call after dropping all locks.
     */
    static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
    			    int otime, struct wake_q_head *wake_q)
    {
    	int i;
    
    	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
    
    	if (!list_empty(&sma->pending_alter)) {
    		/* semaphore array uses the global queue - just process it. */
    		otime |= update_queue(sma, -1, wake_q);
    	} else {
    		if (!sops) {
    			/*
    			 * No sops, thus the modified semaphores are not
    			 * known. Check all.
    			 */
    			for (i = 0; i < sma->sem_nsems; i++)
    				otime |= update_queue(sma, i, wake_q);
    		} else {
    			/*
    			 * Check the semaphores that were increased:
    			 * - No complex ops, thus all sleeping ops are
    			 *   decrease.
    			 * - if we decreased the value, then any sleeping
    			 *   semaphore ops wont be able to run: If the
    			 *   previous value was too small, then the new
    			 *   value will be too small, too.
    			 */
    			for (i = 0; i < nsops; i++) {
    				if (sops[i].sem_op > 0) {
    					otime |= update_queue(sma,
    							      sops[i].sem_num, wake_q);
    				}
    			}
    		}
    	}
    	if (otime)
    		set_semotime(sma, sops);
    }
    
    /*
     * check_qop: Test if a queued operation sleeps on the semaphore semnum
     */
    static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
    			bool count_zero)
    {
    	struct sembuf *sop = q->blocking;
    
    	/*
    	 * Linux always (since 0.99.10) reported a task as sleeping on all
    	 * semaphores. This violates SUS, therefore it was changed to the
    	 * standard compliant behavior.
    	 * Give the administrators a chance to notice that an application
    	 * might misbehave because it relies on the Linux behavior.
    	 */
    	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.
    "
    			"The task %s (%d) triggered the difference, watch for misbehavior.
    ",
    			current->comm, task_pid_nr(current));
    
    	if (sop->sem_num != semnum)
    		return 0;
    
    	if (count_zero && sop->sem_op == 0)
    		return 1;
    	if (!count_zero && sop->sem_op < 0)
    		return 1;
    
    	return 0;
    }
    
    /* The following counts are associated to each semaphore:
     *   semncnt        number of tasks waiting on semval being nonzero
     *   semzcnt        number of tasks waiting on semval being zero
     *
     * Per definition, a task waits only on the semaphore of the first semop
     * that cannot proceed, even if additional operation would block, too.
     */
    static int count_semcnt(struct sem_array *sma, ushort semnum,
    			bool count_zero)
    {
    	struct list_head *l;
    	struct sem_queue *q;
    	int semcnt;
    
    	semcnt = 0;
    	/* First: check the simple operations. They are easy to evaluate */
    	if (count_zero)
    		l = &sma->sems[semnum].pending_const;
    	else
    		l = &sma->sems[semnum].pending_alter;
    
    	list_for_each_entry(q, l, list) {
    		/* all task on a per-semaphore list sleep on exactly
    		 * that semaphore
    		 */
    		semcnt++;
    	}
    
    	/* Then: check the complex operations. */
    	list_for_each_entry(q, &sma->pending_alter, list) {
    		semcnt += check_qop(sma, semnum, q, count_zero);
    	}
    	if (count_zero) {
    		list_for_each_entry(q, &sma->pending_const, list) {
    			semcnt += check_qop(sma, semnum, q, count_zero);
    		}
    	}
    	return semcnt;
    }
    
    /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
     * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
     * remains locked on exit.
     */
    static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
    {
    	struct sem_undo *un, *tu;
    	struct sem_queue *q, *tq;
    	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
    	int i;
    	DEFINE_WAKE_Q(wake_q);
    
    	/* Free the existing undo structures for this semaphore set.  */
    	ipc_assert_locked_object(&sma->sem_perm);
    	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
    		list_del(&un->list_id);
    		spin_lock(&un->ulp->lock);
    		un->semid = -1;
    		list_del_rcu(&un->list_proc);
    		spin_unlock(&un->ulp->lock);
    		kfree_rcu(un, rcu);
    	}
    
    	/* Wake up all pending processes and let them fail with EIDRM. */
    	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
    		unlink_queue(sma, q);
    		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    	}
    
    	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
    		unlink_queue(sma, q);
    		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    	}
    	for (i = 0; i < sma->sem_nsems; i++) {
    		struct sem *sem = &sma->sems[i];
    		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
    			unlink_queue(sma, q);
    			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    		}
    		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
    			unlink_queue(sma, q);
    			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
    		}
    		ipc_update_pid(&sem->sempid, NULL);
    	}
    
    	/* Remove the semaphore set from the IDR */
    	sem_rmid(ns, sma);
    	sem_unlock(sma, -1);
    	rcu_read_unlock();
    
    	wake_up_q(&wake_q);
    	ns->used_sems -= sma->sem_nsems;
    	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    }
    
    static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
    {
    	switch (version) {
    	case IPC_64:
    		return copy_to_user(buf, in, sizeof(*in));
    	case IPC_OLD:
    	    {
    		struct semid_ds out;
    
    		memset(&out, 0, sizeof(out));
    
    		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
    
    		out.sem_otime	= in->sem_otime;
    		out.sem_ctime	= in->sem_ctime;
    		out.sem_nsems	= in->sem_nsems;
    
    		return copy_to_user(buf, &out, sizeof(out));
    	    }
    	default:
    		return -EINVAL;
    	}
    }
    
    static time64_t get_semotime(struct sem_array *sma)
    {
    	int i;
    	time64_t res;
    
    	res = sma->sems[0].sem_otime;
    	for (i = 1; i < sma->sem_nsems; i++) {
    		time64_t to = sma->sems[i].sem_otime;
    
    		if (to > res)
    			res = to;
    	}
    	return res;
    }
    
    static int semctl_stat(struct ipc_namespace *ns, int semid,
    			 int cmd, struct semid64_ds *semid64)
    {
    	struct sem_array *sma;
    	time64_t semotime;
    	int err;
    
    	memset(semid64, 0, sizeof(*semid64));
    
    	rcu_read_lock();
    	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
    		sma = sem_obtain_object(ns, semid);
    		if (IS_ERR(sma)) {
    			err = PTR_ERR(sma);
    			goto out_unlock;
    		}
    	} else { /* IPC_STAT */
    		sma = sem_obtain_object_check(ns, semid);
    		if (IS_ERR(sma)) {
    			err = PTR_ERR(sma);
    			goto out_unlock;
    		}
    	}
    
    	/* see comment for SHM_STAT_ANY */
    	if (cmd == SEM_STAT_ANY)
    		audit_ipc_obj(&sma->sem_perm);
    	else {
    		err = -EACCES;
    		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
    			goto out_unlock;
    	}
    
    	err = security_sem_semctl(&sma->sem_perm, cmd);
    	if (err)
    		goto out_unlock;
    
    	ipc_lock_object(&sma->sem_perm);
    
    	if (!ipc_valid_object(&sma->sem_perm)) {
    		ipc_unlock_object(&sma->sem_perm);
    		err = -EIDRM;
    		goto out_unlock;
    	}
    
    	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
    	semotime = get_semotime(sma);
    	semid64->sem_otime = semotime;
    	semid64->sem_ctime = sma->sem_ctime;
    #ifndef CONFIG_64BIT
    	semid64->sem_otime_high = semotime >> 32;
    	semid64->sem_ctime_high = sma->sem_ctime >> 32;
    #endif
    	semid64->sem_nsems = sma->sem_nsems;
    
    	if (cmd == IPC_STAT) {
    		/*
    		 * As defined in SUS:
    		 * Return 0 on success
    		 */
    		err = 0;
    	} else {
    		/*
    		 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
    		 * Return the full id, including the sequence number
    		 */
    		err = sma->sem_perm.id;
    	}
    	ipc_unlock_object(&sma->sem_perm);
    out_unlock:
    	rcu_read_unlock();
    	return err;
    }
    
    static int semctl_info(struct ipc_namespace *ns, int semid,
    			 int cmd, void __user *p)
    {
    	struct seminfo seminfo;
    	int max_idx;
    	int err;
    
    	err = security_sem_semctl(NULL, cmd);
    	if (err)
    		return err;
    
    	memset(&seminfo, 0, sizeof(seminfo));
    	seminfo.semmni = ns->sc_semmni;
    	seminfo.semmns = ns->sc_semmns;
    	seminfo.semmsl = ns->sc_semmsl;
    	seminfo.semopm = ns->sc_semopm;
    	seminfo.semvmx = SEMVMX;
    	seminfo.semmnu = SEMMNU;
    	seminfo.semmap = SEMMAP;
    	seminfo.semume = SEMUME;
    	down_read(&sem_ids(ns).rwsem);
    	if (cmd == SEM_INFO) {
    		seminfo.semusz = sem_ids(ns).in_use;
    		seminfo.semaem = ns->used_sems;
    	} else {
    		seminfo.semusz = SEMUSZ;
    		seminfo.semaem = SEMAEM;
    	}
    	max_idx = ipc_get_maxidx(&sem_ids(ns));
    	up_read(&sem_ids(ns).rwsem);
    	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
    		return -EFAULT;
    	return (max_idx < 0) ? 0 : max_idx;
    }
    
    static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
    		int val)
    {
    	struct sem_undo *un;
    	struct sem_array *sma;
    	struct sem *curr;
    	int err;
    	DEFINE_WAKE_Q(wake_q);
    
    	if (val > SEMVMX || val < 0)
    		return -ERANGE;
    
    	rcu_read_lock();
    	sma = sem_obtain_object_check(ns, semid);
    	if (IS_ERR(sma)) {
    		rcu_read_unlock();
    		return PTR_ERR(sma);
    	}
    
    	if (semnum < 0 || semnum >= sma->sem_nsems) {
    		rcu_read_unlock();
    		return -EINVAL;
    	}
    
    
    	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
    		rcu_read_unlock();
    		return -EACCES;
    	}
    
    	err = security_sem_semctl(&sma->sem_perm, SETVAL);
    	if (err) {
    		rcu_read_unlock();
    		return -EACCES;
    	}
    
    	sem_lock(sma, NULL, -1);
    
    	if (!ipc_valid_object(&sma->sem_perm)) {
    		sem_unlock(sma, -1);
    		rcu_read_unlock();
    		return -EIDRM;
    	}
    
    	semnum = array_index_nospec(semnum, sma->sem_nsems);
    	curr = &sma->sems[semnum];
    
    	ipc_assert_locked_object(&sma->sem_perm);
    	list_for_each_entry(un, &sma->list_id, list_id)
    		un->semadj[semnum] = 0;
    
    	curr->semval = val;
    	ipc_update_pid(&curr->sempid, task_tgid(current));
    	sma->sem_ctime = ktime_get_real_seconds();
    	/* maybe some queued-up processes were waiting for this */
    	do_smart_update(sma, NULL, 0, 0, &wake_q);
    	sem_unlock(sma, -1);
    	rcu_read_unlock();
    	wake_up_q(&wake_q);
    	return 0;
    }
    
    static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
    		int cmd, void __user *p)
    {
    	struct sem_array *sma;
    	struct sem *curr;
    	int err, nsems;
    	ushort fast_sem_io[SEMMSL_FAST];
    	ushort *sem_io = fast_sem_io;
    	DEFINE_WAKE_Q(wake_q);
    
    	rcu_read_lock();
    	sma = sem_obtain_object_check(ns, semid);
    	if (IS_ERR(sma)) {
    		rcu_read_unlock();
    		return PTR_ERR(sma);
    	}
    
    	nsems = sma->sem_nsems;
    
    	err = -EACCES;
    	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
    		goto out_rcu_wakeup;
    
    	err = security_sem_semctl(&sma->sem_perm, cmd);
    	if (err)
    		goto out_rcu_wakeup;
    
    	err = -EACCES;
    	switch (cmd) {
    	case GETALL:
    	{
    		ushort __user *array = p;
    		int i;
    
    		sem_lock(sma, NULL, -1);
    		if (!ipc_valid_object(&sma->sem_perm)) {
    			err = -EIDRM;
    			goto out_unlock;
    		}
    		if (nsems > SEMMSL_FAST) {
    			if (!ipc_rcu_getref(&sma->sem_perm)) {
    				err = -EIDRM;
    				goto out_unlock;
    			}
    			sem_unlock(sma, -1);
    			rcu_read_unlock();
    			sem_io = kvmalloc_array(nsems, sizeof(ushort),
    						GFP_KERNEL);
    			if (sem_io == NULL) {
    				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    				return -ENOMEM;
    			}
    
    			rcu_read_lock();
    			sem_lock_and_putref(sma);
    			if (!ipc_valid_object(&sma->sem_perm)) {
    				err = -EIDRM;
    				goto out_unlock;
    			}
    		}
    		for (i = 0; i < sma->sem_nsems; i++)
    			sem_io[i] = sma->sems[i].semval;
    		sem_unlock(sma, -1);
    		rcu_read_unlock();
    		err = 0;
    		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
    			err = -EFAULT;
    		goto out_free;
    	}
    	case SETALL:
    	{
    		int i;
    		struct sem_undo *un;
    
    		if (!ipc_rcu_getref(&sma->sem_perm)) {
    			err = -EIDRM;
    			goto out_rcu_wakeup;
    		}
    		rcu_read_unlock();
    
    		if (nsems > SEMMSL_FAST) {
    			sem_io = kvmalloc_array(nsems, sizeof(ushort),
    						GFP_KERNEL);
    			if (sem_io == NULL) {
    				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    				return -ENOMEM;
    			}
    		}
    
    		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
    			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    			err = -EFAULT;
    			goto out_free;
    		}
    
    		for (i = 0; i < nsems; i++) {
    			if (sem_io[i] > SEMVMX) {
    				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    				err = -ERANGE;
    				goto out_free;
    			}
    		}
    		rcu_read_lock();
    		sem_lock_and_putref(sma);
    		if (!ipc_valid_object(&sma->sem_perm)) {
    			err = -EIDRM;
    			goto out_unlock;
    		}
    
    		for (i = 0; i < nsems; i++) {
    			sma->sems[i].semval = sem_io[i];
    			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
    		}
    
    		ipc_assert_locked_object(&sma->sem_perm);
    		list_for_each_entry(un, &sma->list_id, list_id) {
    			for (i = 0; i < nsems; i++)
    				un->semadj[i] = 0;
    		}
    		sma->sem_ctime = ktime_get_real_seconds();
    		/* maybe some queued-up processes were waiting for this */
    		do_smart_update(sma, NULL, 0, 0, &wake_q);
    		err = 0;
    		goto out_unlock;
    	}
    	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
    	}
    	err = -EINVAL;
    	if (semnum < 0 || semnum >= nsems)
    		goto out_rcu_wakeup;
    
    	sem_lock(sma, NULL, -1);
    	if (!ipc_valid_object(&sma->sem_perm)) {
    		err = -EIDRM;
    		goto out_unlock;
    	}
    
    	semnum = array_index_nospec(semnum, nsems);
    	curr = &sma->sems[semnum];
    
    	switch (cmd) {
    	case GETVAL:
    		err = curr->semval;
    		goto out_unlock;
    	case GETPID:
    		err = pid_vnr(curr->sempid);
    		goto out_unlock;
    	case GETNCNT:
    		err = count_semcnt(sma, semnum, 0);
    		goto out_unlock;
    	case GETZCNT:
    		err = count_semcnt(sma, semnum, 1);
    		goto out_unlock;
    	}
    
    out_unlock:
    	sem_unlock(sma, -1);
    out_rcu_wakeup:
    	rcu_read_unlock();
    	wake_up_q(&wake_q);
    out_free:
    	if (sem_io != fast_sem_io)
    		kvfree(sem_io);
    	return err;
    }
    
    static inline unsigned long
    copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
    {
    	switch (version) {
    	case IPC_64:
    		if (copy_from_user(out, buf, sizeof(*out)))
    			return -EFAULT;
    		return 0;
    	case IPC_OLD:
    	    {
    		struct semid_ds tbuf_old;
    
    		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
    			return -EFAULT;
    
    		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
    		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
    		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
    
    		return 0;
    	    }
    	default:
    		return -EINVAL;
    	}
    }
    
    /*
     * This function handles some semctl commands which require the rwsem
     * to be held in write mode.
     * NOTE: no locks must be held, the rwsem is taken inside this function.
     */
    static int semctl_down(struct ipc_namespace *ns, int semid,
    		       int cmd, struct semid64_ds *semid64)
    {
    	struct sem_array *sma;
    	int err;
    	struct kern_ipc_perm *ipcp;
    
    	down_write(&sem_ids(ns).rwsem);
    	rcu_read_lock();
    
    	ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
    				      &semid64->sem_perm, 0);
    	if (IS_ERR(ipcp)) {
    		err = PTR_ERR(ipcp);
    		goto out_unlock1;
    	}
    
    	sma = container_of(ipcp, struct sem_array, sem_perm);
    
    	err = security_sem_semctl(&sma->sem_perm, cmd);
    	if (err)
    		goto out_unlock1;
    
    	switch (cmd) {
    	case IPC_RMID:
    		sem_lock(sma, NULL, -1);
    		/* freeary unlocks the ipc object and rcu */
    		freeary(ns, ipcp);
    		goto out_up;
    	case IPC_SET:
    		sem_lock(sma, NULL, -1);
    		err = ipc_update_perm(&semid64->sem_perm, ipcp);
    		if (err)
    			goto out_unlock0;
    		sma->sem_ctime = ktime_get_real_seconds();
    		break;
    	default:
    		err = -EINVAL;
    		goto out_unlock1;
    	}
    
    out_unlock0:
    	sem_unlock(sma, -1);
    out_unlock1:
    	rcu_read_unlock();
    out_up:
    	up_write(&sem_ids(ns).rwsem);
    	return err;
    }
    
    static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
    {
    	struct ipc_namespace *ns;
    	void __user *p = (void __user *)arg;
    	struct semid64_ds semid64;
    	int err;
    
    	if (semid < 0)
    		return -EINVAL;
    
    	ns = current->nsproxy->ipc_ns;
    
    	switch (cmd) {
    	case IPC_INFO:
    	case SEM_INFO:
    		return semctl_info(ns, semid, cmd, p);
    	case IPC_STAT:
    	case SEM_STAT:
    	case SEM_STAT_ANY:
    		err = semctl_stat(ns, semid, cmd, &semid64);
    		if (err < 0)
    			return err;
    		if (copy_semid_to_user(p, &semid64, version))
    			err = -EFAULT;
    		return err;
    	case GETALL:
    	case GETVAL:
    	case GETPID:
    	case GETNCNT:
    	case GETZCNT:
    	case SETALL:
    		return semctl_main(ns, semid, semnum, cmd, p);
    	case SETVAL: {
    		int val;
    #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
    		/* big-endian 64bit */
    		val = arg >> 32;
    #else
    		/* 32bit or little-endian 64bit */
    		val = arg;
    #endif
    		return semctl_setval(ns, semid, semnum, val);
    	}
    	case IPC_SET:
    		if (copy_semid_from_user(&semid64, p, version))
    			return -EFAULT;
    		/* fall through */
    	case IPC_RMID:
    		return semctl_down(ns, semid, cmd, &semid64);
    	default:
    		return -EINVAL;
    	}
    }
    
    SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
    {
    	return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
    }
    
    #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
    long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
    {
    	int version = ipc_parse_version(&cmd);
    
    	return ksys_semctl(semid, semnum, cmd, arg, version);
    }
    
    SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
    {
    	return ksys_old_semctl(semid, semnum, cmd, arg);
    }
    #endif
    
    #ifdef CONFIG_COMPAT
    
    struct compat_semid_ds {
    	struct compat_ipc_perm sem_perm;
    	old_time32_t sem_otime;
    	old_time32_t sem_ctime;
    	compat_uptr_t sem_base;
    	compat_uptr_t sem_pending;
    	compat_uptr_t sem_pending_last;
    	compat_uptr_t undo;
    	unsigned short sem_nsems;
    };
    
    static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
    					int version)
    {
    	memset(out, 0, sizeof(*out));
    	if (version == IPC_64) {
    		struct compat_semid64_ds __user *p = buf;
    		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
    	} else {
    		struct compat_semid_ds __user *p = buf;
    		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
    	}
    }
    
    static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
    					int version)
    {
    	if (version == IPC_64) {
    		struct compat_semid64_ds v;
    		memset(&v, 0, sizeof(v));
    		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
    		v.sem_otime	 = lower_32_bits(in->sem_otime);
    		v.sem_otime_high = upper_32_bits(in->sem_otime);
    		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
    		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
    		v.sem_nsems = in->sem_nsems;
    		return copy_to_user(buf, &v, sizeof(v));
    	} else {
    		struct compat_semid_ds v;
    		memset(&v, 0, sizeof(v));
    		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
    		v.sem_otime = in->sem_otime;
    		v.sem_ctime = in->sem_ctime;
    		v.sem_nsems = in->sem_nsems;
    		return copy_to_user(buf, &v, sizeof(v));
    	}
    }
    
    static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
    {
    	void __user *p = compat_ptr(arg);
    	struct ipc_namespace *ns;
    	struct semid64_ds semid64;
    	int err;
    
    	ns = current->nsproxy->ipc_ns;
    
    	if (semid < 0)
    		return -EINVAL;
    
    	switch (cmd & (~IPC_64)) {
    	case IPC_INFO:
    	case SEM_INFO:
    		return semctl_info(ns, semid, cmd, p);
    	case IPC_STAT:
    	case SEM_STAT:
    	case SEM_STAT_ANY:
    		err = semctl_stat(ns, semid, cmd, &semid64);
    		if (err < 0)
    			return err;
    		if (copy_compat_semid_to_user(p, &semid64, version))
    			err = -EFAULT;
    		return err;
    	case GETVAL:
    	case GETPID:
    	case GETNCNT:
    	case GETZCNT:
    	case GETALL:
    	case SETALL:
    		return semctl_main(ns, semid, semnum, cmd, p);
    	case SETVAL:
    		return semctl_setval(ns, semid, semnum, arg);
    	case IPC_SET:
    		if (copy_compat_semid_from_user(&semid64, p, version))
    			return -EFAULT;
    		/* fallthru */
    	case IPC_RMID:
    		return semctl_down(ns, semid, cmd, &semid64);
    	default:
    		return -EINVAL;
    	}
    }
    
    COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
    {
    	return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
    }
    
    #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
    long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
    {
    	int version = compat_ipc_parse_version(&cmd);
    
    	return compat_ksys_semctl(semid, semnum, cmd, arg, version);
    }
    
    COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
    {
    	return compat_ksys_old_semctl(semid, semnum, cmd, arg);
    }
    #endif
    #endif
    
    /* If the task doesn't already have a undo_list, then allocate one
     * here.  We guarantee there is only one thread using this undo list,
     * and current is THE ONE
     *
     * If this allocation and assignment succeeds, but later
     * portions of this code fail, there is no need to free the sem_undo_list.
     * Just let it stay associated with the task, and it'll be freed later
     * at exit time.
     *
     * This can block, so callers must hold no locks.
     */
    static inline int get_undo_list(struct sem_undo_list **undo_listp)
    {
    	struct sem_undo_list *undo_list;
    
    	undo_list = current->sysvsem.undo_list;
    	if (!undo_list) {
    		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
    		if (undo_list == NULL)
    			return -ENOMEM;
    		spin_lock_init(&undo_list->lock);
    		refcount_set(&undo_list->refcnt, 1);
    		INIT_LIST_HEAD(&undo_list->list_proc);
    
    		current->sysvsem.undo_list = undo_list;
    	}
    	*undo_listp = undo_list;
    	return 0;
    }
    
    static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
    {
    	struct sem_undo *un;
    
    	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
    				spin_is_locked(&ulp->lock)) {
    		if (un->semid == semid)
    			return un;
    	}
    	return NULL;
    }
    
    static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
    {
    	struct sem_undo *un;
    
    	assert_spin_locked(&ulp->lock);
    
    	un = __lookup_undo(ulp, semid);
    	if (un) {
    		list_del_rcu(&un->list_proc);
    		list_add_rcu(&un->list_proc, &ulp->list_proc);
    	}
    	return un;
    }
    
    /**
     * find_alloc_undo - lookup (and if not present create) undo array
     * @ns: namespace
     * @semid: semaphore array id
     *
     * The function looks up (and if not present creates) the undo structure.
     * The size of the undo structure depends on the size of the semaphore
     * array, thus the alloc path is not that straightforward.
     * Lifetime-rules: sem_undo is rcu-protected, on success, the function
     * performs a rcu_read_lock().
     */
    static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
    {
    	struct sem_array *sma;
    	struct sem_undo_list *ulp;
    	struct sem_undo *un, *new;
    	int nsems, error;
    
    	error = get_undo_list(&ulp);
    	if (error)
    		return ERR_PTR(error);
    
    	rcu_read_lock();
    	spin_lock(&ulp->lock);
    	un = lookup_undo(ulp, semid);
    	spin_unlock(&ulp->lock);
    	if (likely(un != NULL))
    		goto out;
    
    	/* no undo structure around - allocate one. */
    	/* step 1: figure out the size of the semaphore array */
    	sma = sem_obtain_object_check(ns, semid);
    	if (IS_ERR(sma)) {
    		rcu_read_unlock();
    		return ERR_CAST(sma);
    	}
    
    	nsems = sma->sem_nsems;
    	if (!ipc_rcu_getref(&sma->sem_perm)) {
    		rcu_read_unlock();
    		un = ERR_PTR(-EIDRM);
    		goto out;
    	}
    	rcu_read_unlock();
    
    	/* step 2: allocate new undo structure */
    	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
    	if (!new) {
    		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
    		return ERR_PTR(-ENOMEM);
    	}
    
    	/* step 3: Acquire the lock on semaphore array */
    	rcu_read_lock();
    	sem_lock_and_putref(sma);
    	if (!ipc_valid_object(&sma->sem_perm)) {
    		sem_unlock(sma, -1);
    		rcu_read_unlock();
    		kfree(new);
    		un = ERR_PTR(-EIDRM);
    		goto out;
    	}
    	spin_lock(&ulp->lock);
    
    	/*
    	 * step 4: check for races: did someone else allocate the undo struct?
    	 */
    	un = lookup_undo(ulp, semid);
    	if (un) {
    		kfree(new);
    		goto success;
    	}
    	/* step 5: initialize & link new undo structure */
    	new->semadj = (short *) &new[1];
    	new->ulp = ulp;
    	new->semid = semid;
    	assert_spin_locked(&ulp->lock);
    	list_add_rcu(&new->list_proc, &ulp->list_proc);
    	ipc_assert_locked_object(&sma->sem_perm);
    	list_add(&new->list_id, &sma->list_id);
    	un = new;
    
    success:
    	spin_unlock(&ulp->lock);
    	sem_unlock(sma, -1);
    out:
    	return un;
    }
    
    static long do_semtimedop(int semid, struct sembuf __user *tsops,
    		unsigned nsops, const struct timespec64 *timeout)
    {
    	int error = -EINVAL;
    	struct sem_array *sma;
    	struct sembuf fast_sops[SEMOPM_FAST];
    	struct sembuf *sops = fast_sops, *sop;
    	struct sem_undo *un;
    	int max, locknum;
    	bool undos = false, alter = false, dupsop = false;
    	struct sem_queue queue;
    	unsigned long dup = 0, jiffies_left = 0;
    	struct ipc_namespace *ns;
    
    	ns = current->nsproxy->ipc_ns;
    
    	if (nsops < 1 || semid < 0)
    		return -EINVAL;
    	if (nsops > ns->sc_semopm)
    		return -E2BIG;
    	if (nsops > SEMOPM_FAST) {
    		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
    		if (sops == NULL)
    			return -ENOMEM;
    	}
    
    	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
    		error =  -EFAULT;
    		goto out_free;
    	}
    
    	if (timeout) {
    		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
    			timeout->tv_nsec >= 1000000000L) {
    			error = -EINVAL;
    			goto out_free;
    		}
    		jiffies_left = timespec64_to_jiffies(timeout);
    	}
    
    	max = 0;
    	for (sop = sops; sop < sops + nsops; sop++) {
    		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
    
    		if (sop->sem_num >= max)
    			max = sop->sem_num;
    		if (sop->sem_flg & SEM_UNDO)
    			undos = true;
    		if (dup & mask) {
    			/*
    			 * There was a previous alter access that appears
    			 * to have accessed the same semaphore, thus use
    			 * the dupsop logic. "appears", because the detection
    			 * can only check % BITS_PER_LONG.
    			 */
    			dupsop = true;
    		}
    		if (sop->sem_op != 0) {
    			alter = true;
    			dup |= mask;
    		}
    	}
    
    	if (undos) {
    		/* On success, find_alloc_undo takes the rcu_read_lock */
    		un = find_alloc_undo(ns, semid);
    		if (IS_ERR(un)) {
    			error = PTR_ERR(un);
    			goto out_free;
    		}
    	} else {
    		un = NULL;
    		rcu_read_lock();
    	}
    
    	sma = sem_obtain_object_check(ns, semid);
    	if (IS_ERR(sma)) {
    		rcu_read_unlock();
    		error = PTR_ERR(sma);
    		goto out_free;
    	}
    
    	error = -EFBIG;
    	if (max >= sma->sem_nsems) {
    		rcu_read_unlock();
    		goto out_free;
    	}
    
    	error = -EACCES;
    	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
    		rcu_read_unlock();
    		goto out_free;
    	}
    
    	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
    	if (error) {
    		rcu_read_unlock();
    		goto out_free;
    	}
    
    	error = -EIDRM;
    	locknum = sem_lock(sma, sops, nsops);
    	/*
    	 * We eventually might perform the following check in a lockless
    	 * fashion, considering ipc_valid_object() locking constraints.
    	 * If nsops == 1 and there is no contention for sem_perm.lock, then
    	 * only a per-semaphore lock is held and it's OK to proceed with the
    	 * check below. More details on the fine grained locking scheme
    	 * entangled here and why it's RMID race safe on comments at sem_lock()
    	 */
    	if (!ipc_valid_object(&sma->sem_perm))
    		goto out_unlock_free;
    	/*
    	 * semid identifiers are not unique - find_alloc_undo may have
    	 * allocated an undo structure, it was invalidated by an RMID
    	 * and now a new array with received the same id. Check and fail.
    	 * This case can be detected checking un->semid. The existence of
    	 * "un" itself is guaranteed by rcu.
    	 */
    	if (un && un->semid == -1)
    		goto out_unlock_free;
    
    	queue.sops = sops;
    	queue.nsops = nsops;
    	queue.undo = un;
    	queue.pid = task_tgid(current);
    	queue.alter = alter;
    	queue.dupsop = dupsop;
    
    	error = perform_atomic_semop(sma, &queue);
    	if (error == 0) { /* non-blocking succesfull path */
    		DEFINE_WAKE_Q(wake_q);
    
    		/*
    		 * If the operation was successful, then do
    		 * the required updates.
    		 */
    		if (alter)
    			do_smart_update(sma, sops, nsops, 1, &wake_q);
    		else
    			set_semotime(sma, sops);
    
    		sem_unlock(sma, locknum);
    		rcu_read_unlock();
    		wake_up_q(&wake_q);
    
    		goto out_free;
    	}
    	if (error < 0) /* non-blocking error path */
    		goto out_unlock_free;
    
    	/*
    	 * We need to sleep on this operation, so we put the current
    	 * task into the pending queue and go to sleep.
    	 */
    	if (nsops == 1) {
    		struct sem *curr;
    		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
    		curr = &sma->sems[idx];
    
    		if (alter) {
    			if (sma->complex_count) {
    				list_add_tail(&queue.list,
    						&sma->pending_alter);
    			} else {
    
    				list_add_tail(&queue.list,
    						&curr->pending_alter);
    			}
    		} else {
    			list_add_tail(&queue.list, &curr->pending_const);
    		}
    	} else {
    		if (!sma->complex_count)
    			merge_queues(sma);
    
    		if (alter)
    			list_add_tail(&queue.list, &sma->pending_alter);
    		else
    			list_add_tail(&queue.list, &sma->pending_const);
    
    		sma->complex_count++;
    	}
    
    	do {
    		WRITE_ONCE(queue.status, -EINTR);
    		queue.sleeper = current;
    
    		__set_current_state(TASK_INTERRUPTIBLE);
    		sem_unlock(sma, locknum);
    		rcu_read_unlock();
    
    		if (timeout)
    			jiffies_left = schedule_timeout(jiffies_left);
    		else
    			schedule();
    
    		/*
    		 * fastpath: the semop has completed, either successfully or
    		 * not, from the syscall pov, is quite irrelevant to us at this
    		 * point; we're done.
    		 *
    		 * We _do_ care, nonetheless, about being awoken by a signal or
    		 * spuriously.  The queue.status is checked again in the
    		 * slowpath (aka after taking sem_lock), such that we can detect
    		 * scenarios where we were awakened externally, during the
    		 * window between wake_q_add() and wake_up_q().
    		 */
    		error = READ_ONCE(queue.status);
    		if (error != -EINTR) {
    			/*
    			 * User space could assume that semop() is a memory
    			 * barrier: Without the mb(), the cpu could
    			 * speculatively read in userspace stale data that was
    			 * overwritten by the previous owner of the semaphore.
    			 */
    			smp_mb();
    			goto out_free;
    		}
    
    		rcu_read_lock();
    		locknum = sem_lock(sma, sops, nsops);
    
    		if (!ipc_valid_object(&sma->sem_perm))
    			goto out_unlock_free;
    
    		error = READ_ONCE(queue.status);
    
    		/*
    		 * If queue.status != -EINTR we are woken up by another process.
    		 * Leave without unlink_queue(), but with sem_unlock().
    		 */
    		if (error != -EINTR)
    			goto out_unlock_free;
    
    		/*
    		 * If an interrupt occurred we have to clean up the queue.
    		 */
    		if (timeout && jiffies_left == 0)
    			error = -EAGAIN;
    	} while (error == -EINTR && !signal_pending(current)); /* spurious */
    
    	unlink_queue(sma, &queue);
    
    out_unlock_free:
    	sem_unlock(sma, locknum);
    	rcu_read_unlock();
    out_free:
    	if (sops != fast_sops)
    		kvfree(sops);
    	return error;
    }
    
    long ksys_semtimedop(int semid, struct sembuf __user *tsops,
    		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
    {
    	if (timeout) {
    		struct timespec64 ts;
    		if (get_timespec64(&ts, timeout))
    			return -EFAULT;
    		return do_semtimedop(semid, tsops, nsops, &ts);
    	}
    	return do_semtimedop(semid, tsops, nsops, NULL);
    }
    
    SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
    		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
    {
    	return ksys_semtimedop(semid, tsops, nsops, timeout);
    }
    
    #ifdef CONFIG_COMPAT_32BIT_TIME
    long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
    			    unsigned int nsops,
    			    const struct old_timespec32 __user *timeout)
    {
    	if (timeout) {
    		struct timespec64 ts;
    		if (get_old_timespec32(&ts, timeout))
    			return -EFAULT;
    		return do_semtimedop(semid, tsems, nsops, &ts);
    	}
    	return do_semtimedop(semid, tsems, nsops, NULL);
    }
    
    SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
    		       unsigned int, nsops,
    		       const struct old_timespec32 __user *, timeout)
    {
    	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
    }
    #endif
    
    SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
    		unsigned, nsops)
    {
    	return do_semtimedop(semid, tsops, nsops, NULL);
    }
    
    /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
     * parent and child tasks.
     */
    
    int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct sem_undo_list *undo_list;
    	int error;
    
    	if (clone_flags & CLONE_SYSVSEM) {
    		error = get_undo_list(&undo_list);
    		if (error)
    			return error;
    		refcount_inc(&undo_list->refcnt);
    		tsk->sysvsem.undo_list = undo_list;
    	} else
    		tsk->sysvsem.undo_list = NULL;
    
    	return 0;
    }
    
    /*
     * add semadj values to semaphores, free undo structures.
     * undo structures are not freed when semaphore arrays are destroyed
     * so some of them may be out of date.
     * IMPLEMENTATION NOTE: There is some confusion over whether the
     * set of adjustments that needs to be done should be done in an atomic
     * manner or not. That is, if we are attempting to decrement the semval
     * should we queue up and wait until we can do so legally?
     * The original implementation attempted to do this (queue and wait).
     * The current implementation does not do so. The POSIX standard
     * and SVID should be consulted to determine what behavior is mandated.
     */
    void exit_sem(struct task_struct *tsk)
    {
    	struct sem_undo_list *ulp;
    
    	ulp = tsk->sysvsem.undo_list;
    	if (!ulp)
    		return;
    	tsk->sysvsem.undo_list = NULL;
    
    	if (!refcount_dec_and_test(&ulp->refcnt))
    		return;
    
    	for (;;) {
    		struct sem_array *sma;
    		struct sem_undo *un;
    		int semid, i;
    		DEFINE_WAKE_Q(wake_q);
    
    		cond_resched();
    
    		rcu_read_lock();
    		un = list_entry_rcu(ulp->list_proc.next,
    				    struct sem_undo, list_proc);
    		if (&un->list_proc == &ulp->list_proc) {
    			/*
    			 * We must wait for freeary() before freeing this ulp,
    			 * in case we raced with last sem_undo. There is a small
    			 * possibility where we exit while freeary() didn't
    			 * finish unlocking sem_undo_list.
    			 */
    			spin_lock(&ulp->lock);
    			spin_unlock(&ulp->lock);
    			rcu_read_unlock();
    			break;
    		}
    		spin_lock(&ulp->lock);
    		semid = un->semid;
    		spin_unlock(&ulp->lock);
    
    		/* exit_sem raced with IPC_RMID, nothing to do */
    		if (semid == -1) {
    			rcu_read_unlock();
    			continue;
    		}
    
    		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
    		/* exit_sem raced with IPC_RMID, nothing to do */
    		if (IS_ERR(sma)) {
    			rcu_read_unlock();
    			continue;
    		}
    
    		sem_lock(sma, NULL, -1);
    		/* exit_sem raced with IPC_RMID, nothing to do */
    		if (!ipc_valid_object(&sma->sem_perm)) {
    			sem_unlock(sma, -1);
    			rcu_read_unlock();
    			continue;
    		}
    		un = __lookup_undo(ulp, semid);
    		if (un == NULL) {
    			/* exit_sem raced with IPC_RMID+semget() that created
    			 * exactly the same semid. Nothing to do.
    			 */
    			sem_unlock(sma, -1);
    			rcu_read_unlock();
    			continue;
    		}
    
    		/* remove un from the linked lists */
    		ipc_assert_locked_object(&sma->sem_perm);
    		list_del(&un->list_id);
    
    		/* we are the last process using this ulp, acquiring ulp->lock
    		 * isn't required. Besides that, we are also protected against
    		 * IPC_RMID as we hold sma->sem_perm lock now
    		 */
    		list_del_rcu(&un->list_proc);
    
    		/* perform adjustments registered in un */
    		for (i = 0; i < sma->sem_nsems; i++) {
    			struct sem *semaphore = &sma->sems[i];
    			if (un->semadj[i]) {
    				semaphore->semval += un->semadj[i];
    				/*
    				 * Range checks of the new semaphore value,
    				 * not defined by sus:
    				 * - Some unices ignore the undo entirely
    				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
    				 * - some cap the value (e.g. FreeBSD caps
    				 *   at 0, but doesn't enforce SEMVMX)
    				 *
    				 * Linux caps the semaphore value, both at 0
    				 * and at SEMVMX.
    				 *
    				 *	Manfred <manfred@colorfullife.com>
    				 */
    				if (semaphore->semval < 0)
    					semaphore->semval = 0;
    				if (semaphore->semval > SEMVMX)
    					semaphore->semval = SEMVMX;
    				ipc_update_pid(&semaphore->sempid, task_tgid(current));
    			}
    		}
    		/* maybe some queued-up processes were waiting for this */
    		do_smart_update(sma, NULL, 0, 1, &wake_q);
    		sem_unlock(sma, -1);
    		rcu_read_unlock();
    		wake_up_q(&wake_q);
    
    		kfree_rcu(un, rcu);
    	}
    	kfree(ulp);
    }
    
    #ifdef CONFIG_PROC_FS
    static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
    {
    	struct user_namespace *user_ns = seq_user_ns(s);
    	struct kern_ipc_perm *ipcp = it;
    	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
    	time64_t sem_otime;
    
    	/*
    	 * The proc interface isn't aware of sem_lock(), it calls
    	 * ipc_lock_object() directly (in sysvipc_find_ipc).
    	 * In order to stay compatible with sem_lock(), we must
    	 * enter / leave complex_mode.
    	 */
    	complexmode_enter(sma);
    
    	sem_otime = get_semotime(sma);
    
    	seq_printf(s,
    		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu
    ",
    		   sma->sem_perm.key,
    		   sma->sem_perm.id,
    		   sma->sem_perm.mode,
    		   sma->sem_nsems,
    		   from_kuid_munged(user_ns, sma->sem_perm.uid),
    		   from_kgid_munged(user_ns, sma->sem_perm.gid),
    		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
    		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
    		   sem_otime,
    		   sma->sem_ctime);
    
    	complexmode_tryleave(sma);
    
    	return 0;
    }
    #endif
    

      

  • 相关阅读:
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
    一手遮天 Android
  • 原文地址:https://www.cnblogs.com/still-smile/p/12040589.html
Copyright © 2011-2022 走看看