zoukankan      html  css  js  c++  java
  • 【洛谷P2831】愤怒的小鸟

    题目

    题目链接:https://www.luogu.com.cn/problem/P2831

    Kiana 最近沉迷于一款神奇的游戏无法自拔。

    简单来说,这款游戏是在一个平面上进行的。

    有一架弹弓位于 \((0,0)\) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 \(y=ax^2+bx\) 的曲线,其中 \(a,b\) 是 Kiana 指定的参数,且必须满足 \(a < 0\)\(a,b\) 都是实数。

    当小鸟落回地面(即 \(x\) 轴)时,它就会瞬间消失。

    在游戏的某个关卡里,平面的第一象限中有 \(n\) 只绿色的小猪,其中第 \(i\) 只小猪所在的坐标为 \(\left(x_i,y_i \right)\)

    如果某只小鸟的飞行轨迹经过了 \(\left( x_i, y_i \right)\),那么第 \(i\) 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

    如果一只小鸟的飞行轨迹没有经过 \(\left( x_i, y_i \right)\),那么这只小鸟飞行的全过程就不会对第 \(i\) 只小猪产生任何影响。

    例如,若两只小猪分别位于 \((1,3)\)\((3,3)\),Kiana 可以选择发射一只飞行轨迹为 \(y=-x^2+4x\) 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

    而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

    这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

    假设这款游戏一共有 \(T\) 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

    思路

    显然设 \(f[s]\) 表示已经打掉的猪的集合为 \(s\) 所需的步数。
    预处理出 \(S[i][j]\) 表示 猪 \(i,j\) 坐标以及 \((0,0)\) 所构成的抛物线能打到的猪的集合。转移时枚举两个猪转移即可。
    时间复杂度 \(O(n^22^n)\)

    代码

    #include <bits/stdc++.h>
    #define reg register
    using namespace std;
    
    const int N=20,M=(1<<18)+10;
    const double eps=1e-8;
    int Q,n,ans,type,S[N][N],f[M],cnt[M];
    double X[N],Y[N];
    
    void prework()
    {
    	memset(f,0x3f3f3f3f,sizeof(f));
    	memset(S,0,sizeof(S));
    	f[0]=0; ans=114514;
    }
    
    int main()
    {
    	cnt[0]=0;
    	for (reg int i=1;i<M;i++)
    		cnt[i]=cnt[i-(i&-i)]+1;
    	scanf("%d",&Q);
    	while (Q--)
    	{
    		prework();
    		scanf("%d%d",&n,&type);
    		for (reg int i=1;i<=n;i++)
    			scanf("%lf%lf",&X[i],&Y[i]);
    		for (reg int i=1;i<=n;i++)
    			for (reg int j=1;j<=n;j++)
    			{
    				double rate=X[j]/X[i];
    				double a=(rate*Y[i]-Y[j])/(rate*X[i]*X[i]-X[j]*X[j]);
    				double b=(Y[i]-a*X[i]*X[i])/X[i];
    				if (a>=0 || X[i]==X[j]) continue;
    				for (reg int k=1;k<=n;k++)
    					if (fabs(Y[k]-a*X[k]*X[k]-b*X[k])<=eps) S[i][j]|=(1<<k-1);
    			}
    		int Maxn=(1<<n);
    		for (reg int s=0;s<Maxn;s++)
    			for (reg int i=1;i<=n;i++)
    				for (reg int j=1;j<=n;j++)
    					if (S[i][j]) f[s|S[i][j]]=min(f[s|S[i][j]],f[s]+1);
    		for (reg int i=0;i<Maxn;i++)
    			ans=min(ans,f[i]+n-cnt[i]);
    		printf("%d\n",ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    python 内存泄漏——使用pymssql模块的讨论 free(): corrupted unsorted chunks
    Python的gc模块
    使用多线程——线程池
    sqlserver 数据库连接池
    drf response——简单封装
    邮箱找回密码实现
    阿里云 oss 服务 —— 上传图片,获取url
    dajngo-apscheduler 实现定时任务
    kubernetes基础概念
    Path must be a string.
  • 原文地址:https://www.cnblogs.com/stoorz/p/13777589.html
Copyright © 2011-2022 走看看