zoukankan      html  css  js  c++  java
  • 【AGC019F】Yes or No

    题目

    题目链接:https://atcoder.jp/contests/agc019/tasks/agc019_f
    (N+M) 个问题,其中有 (N) 个问题的答案是 YES(M) 个问题的答案是 NO。当你回答一个问题之后,会知道这个问题的答案,求最优策略下期望对多少。
    答案对 (998244353) 取模。

    思路

    假设目前已经确定剩余 (n)YES(m)NO,那么最优策略肯定是猜更多的那一边。
    把选择 YES 看作是向左走一个单位长度,选择 NO 看作是向下走一个单位长度,那么这 (n+m) 个选择可以看作是从 ((n,m)) 走向 ((0,0)) 的一条路径。
    对于一个点 ((x,y)),如果 (xgeq y),那么就走到 ((x-1,y)),否则走到 ((x,y-1))。把每一个点到它下一步走的点的路径标记。那么对于这 (inom{n+m}{n}) 种答案的可能中任意一种,如果这一步走的是标记的路径,那么对的数量就 (+1)
    (ngeq m),可以把直线 (f(x)=x) 左上方的网格直接翻折过来,发现每一条从 ((n,m))((0,0)) 的路径,经过的标记边的数量就是 (n+) 走到直线 (f(x)=x) 且下一步往左的次数。
    那么只需要对于直线 (f(x)=x) 的每一个点都求出有多少条路径会经过这一个点即可。组合数随便搞搞不难发现答案就是

    [frac{sum^{m}_{i=1}inom{2i}{i}inom{n+m-2i}{n-i}}{inom{n+m}{n}}+n ]

    时间复杂度 (O(n+m))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    const int N=1000010,MOD=998244353,inv2=499122177;
    int n,m;
    ll ans,fac[N],inv[N];
    
    ll fpow(ll x,ll k)
    {
    	ll ans=1;
    	for (;k;k>>=1,x=x*x%MOD)
    		if (k&1) ans=ans*x%MOD;
    	return ans;
    }
    
    ll C(int n,int m)
    {
    	return fac[n]*inv[m]%MOD*inv[n-m]%MOD;
    }
    
    int main()
    {
    	scanf("%d%d",&n,&m);
    	fac[0]=inv[0]=1;
    	for (int i=1;i<=n+m;i++) fac[i]=fac[i-1]*i%MOD;
    	inv[n+m]=fpow(fac[n+m],MOD-2);
    	for (int i=n+m-1;i>=1;i--) inv[i]=inv[i+1]*(i+1)%MOD;
    	if (n<m) swap(n,m);
    	for (int i=1;i<=m;i++)
    		ans=(ans+C(2*i,i)*C(n+m-2*i,n-i))%MOD;
    	cout<<(ans*inv2%MOD*fpow(C(n+m,n),MOD-2)+n)%MOD;
    	return 0;
    }
    
  • 相关阅读:
    牛客 158F 青蛙 (贪心)
    牛客 158D a-贝利福斯数
    长沙理工大学第十二届ACM大赛-重现赛 大家一起来数二叉树吧 (组合计数)
    美团2017年CodeM大赛-初赛B轮 黑白树 (树形dp)
    美团2017年CodeM大赛-初赛A轮 C合并回文子串
    活动安排问题
    0和5
    1489 蜥蜴和地下室
    1067 Bash游戏 V2
    1062 序列中最大的数
  • 原文地址:https://www.cnblogs.com/stoorz/p/15109407.html
Copyright © 2011-2022 走看看