zoukankan      html  css  js  c++  java
  • 几何-对称图形:中心对称图形

    ylbtech-几何-对称图形:中心对称图形
    中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转180°后重合的两个点叫做对称点(corresponding points)。
    中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
    1.返回顶部
    1、
    中文名:中心对称图形
    外文名:Central symmetry graph
    学习阶段:初中
    常见对称图形:矩形、菱形等
    关键词:中心对称、对称点
    应用学科:数学

    目录

    2、
    2.返回顶部
    1、

    定义

    中心对称图形中心对称图形
    在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。旋转前后图形上能够重合的点叫做对称点.
    理解中心对称的定义要抓住以下三个要素:
    (1)有一个对称中心——点。
    (2)图形绕中心旋转180°。
    (3)旋转后两图形重合。
    中心对称的性质
    连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分。
    中心对称
    在平面内,把一个图形绕某一定点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这个点叫做对称中心,旋转后两个图形上能够重合的点叫做关于对称中心的对称点。
    如图,△ABC绕着点O旋转180°,和△A′B′C′能够完全重合,则这两个三角形关于点O对称,点O叫对称中心,A与A′,B与B′,C与C′叫关于O的对称点。
    注意:(1)中心对称是指两个图形的关系,成中心对称的两个图形只有一个对称中心,并且一个图形上的所有点关于对称中心的对称点都在另一个图形上,反过来,另一个图形上的所有点关于这个中心的对称点都在这个图形上;
    (2)中心对称与中心对称图形之间的关系
    区别:①中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。
    ②成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
    联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,那么这个整体也就是中心对称图形.
    中心对称的特征及识别方法
    (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
    (2)关于中心对称的两个图形是全等形;
    (3)如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形关于这点成中心对称;
    (4)中心对称的特征揭示了其图形的特征. 如上图所示,如果△ABC与△A′B′C′关于点O成中心对称,则:①A,O,A′;B,O,B′;C,O,C′均三点共线,且OA=OA′,OB=OB′,OC=OC′;②△ABC△A′B′C′;
    (5)如果已知ABC与△A′B′C′关于某点成中心对称,则点O必为AA′、BB′、CC′的中点,且它们是同一点,故也可以连结AA′、BB′,则其交点即为对称中心。
    关于原点对称的点的坐标
    两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P′(-x,-y)。
    理解关于原点对称的点的坐标的特征时,要结合图形理解记忆,要善于将点的位置关系转化为点的坐标的数量关系或将点的坐标的数量关系转化为点的位置关系。
     

    性质

    1、对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。
    2、成  中心对称的两个图形全等。
    3、成中心对称的两个图形上每一对对称点所连成的线段都被对称中心平分。
    区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
     

    常见

    常见的中心对称图形有:线段矩形菱形正方形平行四边形,边数为偶数的正多边形等。
    例如:正偶数边形是中心对称图形,正奇数边形不是中心对称图形;正六角形是中心对称图形,等腰梯形不是中心对称图形;等边三角形正三角形)不是中心对称图形,反比例函数的图像双曲线是以原点为对称中心的中心对称图形。
    中心对称的两个图形中的对应线段平行相等。
     

    典型例题讲解

    例1
    下列说法:
    ①成中心对称的两个图形形状一样,大小一样;
    ②成中心对称的两个图形必须重合;
    ③形状一样,大小一样的两个图形成中心对称;
    ④旋转后能够重合的两个图形成中心对称。
    其中说法正确的个数是(B )
    A. 0个 B. 1个 C. 2个 D. 3个
    解析:
    要注意能重合与必须重合,旋转与旋转180°的区别.由成中心对称的性质知,成中心对称的两个图形必定能重合,故①正确;成中心对称的两个图形能重合,但是绕中心旋转180°后能重合,未旋转时它们不是必须重合,故②错误;形状一样,大小一样的两个图形不一定处在成中心对称的位置,由中心对称的判定知,能重合的两个图形不一定成中心对称,故③错误;成中心对称的两个图形旋转后能重合,关键是要旋转180°后能重合,并非旋转任意角度就重合,故④错误.说法正确的个数只有1个,故选B。
    例2、如图所示,请在网格中画出四边形A′B′C′D′,使它与原四边形ABCD关于点O成中心对称。
    思路:
    寻找A、B、C、D关于中心O的对称点A′、B′、C′、D′,如A点对称点画法:①连结OA;②延长AO至A′,使OA′=OA,A′即为所求。
    画法:
    (1)连结OA,并延长AO;
    (2)在AO延长线上截取OA′=OA,得A的对称点A′;(用刻度尺或圆规截取,不能估计)
    (3)依次画出B、C、D关于点O′的对称点B′、C′、D′,连结A′B′,B′C′,C′D′,D′A′.
    如图所示,得四边形A′B′C′D′为所求的四边形。
    总结:
    (1)由中心对称图形性质:对应点与中心连线在一条直线上,并且被对称中心平分,因此画图时,将A与O连结并延长一倍即可得到对应点A′;
    (2)网格上对应点也可以通过数单位长度来确定对应点;
    (3)一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。
    2、
    3.返回顶部
     
    4.返回顶部
     
    5.返回顶部
    1、
    2、
     
    6.返回顶部
     
    warn 作者:ylbtech
    出处:http://ylbtech.cnblogs.com/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    yolo_to_onnx ValueError: need more tan 1 value to unpack
    yolo_to_onnx killed
    C++ 实现二维矩阵的加减乘等运算
    Leetcode 1013. Partition Array Into Three Parts With Equal Sum
    Leetcode 1014. Best Sightseeing Pair
    Leetcode 121. Best Time to Buy and Sell Stock
    Leetcode 219. Contains Duplicate II
    Leetcode 890. Find and Replace Pattern
    Leetcode 965. Univalued Binary Tree
    Leetcode 700. Search in a Binary Search Tree
  • 原文地址:https://www.cnblogs.com/storebook/p/14121430.html
Copyright © 2011-2022 走看看