zoukankan      html  css  js  c++  java
  • Codeforces Hello 2019 D. Makoto and a Blackboard[DP+数论+概率期望]

    题意:给出n和k,n每次会等概率的变成n的一个因子,问这样k次以后的期望大小

    每个质因子贡献独立,变成一个因子就相当于变了质因子的次数

    所以分解质因数以后对每个质因子做dp

    #include <bits/stdc++.h>
    using namespace std;
    #define int long long
    const int mod = 1e9 + 7;
    #define mp make_pair
    #define pb push_back
    int dp[205], inv[205], ans, pre[205], n, k;
    vector< pair<int, int> >v;
    inline void divide(int n) {
    	int cur = n;
    	for (int i = 2; i * i <= n; ++i)
    		if (cur % i == 0) {
    			int tot = 0;
    			do cur /= i, ++tot; while (cur % i == 0);
    			v.pb(mp(i, tot));
    		}
    	if (cur > 1) v.pb(mp(cur, 1));
    }
    // n = prod {p_i^{k_i}}
    //dp[j] p_i^j 对答案贡献次数的期望
    signed main() {
    	cin >> n >> k;
    	divide(n);
    	ans = 1;
    	inv[1] = 1;
    	for (int i = 2; i <= 200; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
    	for (auto it = v.begin(); it != v.end(); ++it) {
    		fill(dp, dp + 200, 0);
    		dp[it->second] = 1;
    		for (int j = 1; j <= k; ++j) {
    			fill(pre, pre + 200, 0);
    			for (int l = 0; l <= it->second; ++l) (pre[0] += dp[l] * inv[l + 1] % mod) %= mod, (pre[l + 1] -= dp[l] * inv[l + 1] % mod) %= mod; //p_i^k对dp[0]..dp[k]都有dp[l] / (l+1)的贡献,差分
    			for (int l = 1; l <= it->second; ++l) (pre[l] += pre[l - 1]) %= mod;
    			for (int l = 0; l <= it->second; ++l) dp[l] = pre[l];
    		}
    		int res = 0, res1 = 1;
    		for (int j = 0; j <= it->second; ++j) (res += res1 * dp[j] % mod) %= mod, (res1 *= it->first) %= mod; //统计答案
    		(ans *= res) %= mod;
    	}
    	cout << (ans + mod) % mod;
    	return 0;
    }
    
  • 相关阅读:
    面向对象继承
    webpack 错误提示 Error: Can't resolve 'css-loader'或Error: Can't resolve 'style-loader'
    Math.min() Math.max()
    表单
    addEventListener()
    H5图片背景
    ruby获取最新ruby
    js对象拷贝
    Oh-My-Zsh 下远程ssh的乱码问题
    MSSQL、MySQL 数据库删除大批量千万级百万级数据的优化
  • 原文地址:https://www.cnblogs.com/storz/p/10226528.html
Copyright © 2011-2022 走看看